Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That stomatal transpiration is the transpiration by escape of water through pores (stomata) of leaves [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for valley fill (Keyword) returned 6 results for the whole karstbase:
Three regolith-collapse sinkholes formed near the Dongola Unit School and the Pentecostal Church in the southern Illinois village of Dongola (Union County) during the spring of 1993. The sinkholes appeared over a three-month period that coincided with development of a new municipal well. The new well was drilled through clay-rich, valley-fill sediment into karstified limestone bedrock. The piezometric surface of the limestone aquifer is above land surface, indicating the presence of an upward hydraulic gradient in the valley and that the valley fill is acting as a confining unit. Pumping during development of the well lowered the piezometric surface of the limestone aquifer to an elevation below the base of the valley fill. It is hypothesized that drainage of water from the sediments, the resulting loss of hydrostatic pressure and buoyant force in overlying sediments, increased intergranular pressure, and the initiation of groundwater flow toward the well resulted in rapid sediment transport, subsurface erosion, and collapse of the valley-fill sediment. The sinkholes follow an approximately east west alignment, which is consistent with one of the two dominant alignments of passages of nearby joint-controlled caves. A constant electrode-separation resistivity survey of the school playground was conducted to locate areas that might contain incipient sinkholes. The survey revealed a positive resistivity anomaly trending N75E in the southern part of the study area. The anomaly is linear, between 5 and 10 m wide. and its trend either intersects or is immediately adjacent to the three sinkholes. The anomaly is interpreted to be a series of pumping-induced cavities in the valley-fill sediments that formed over a preexisting crevice in the karstified bedrock limestone

3-D seismic evidence of the effects of carbonate karst collapse on overlying clastic stratigraphy and reservoir compartmentalization, 1996, Hardage B. A. , Carr D. L. , Lancaster D. E. , Simmons J. L. , Elphick R. Y. , Pendleton V. M. , Johns R. A. ,
A multidisciplinary team, composed of stratigraphers, petrophysicists, reservoir engineers, and geophysicists, studied a portion of Boonsville gas field in the Fort Worth Basin of north-central Texas to determine how modern geophysical, geological, and engineering techniques can be combined to understand the mechanisms by which fluvio-deltaic depositional processes create reservoir compartmentalization in a low- to moderate-accommodation basin. An extensive database involving well logs: cores, production, and pressure data from more than 200 wells, 26 mi(2) (67 km(2)) of 3-D seismic data, vertical seismic profiles (VSPs), and checkshots was assembled to support this investigation. We found the mast Important geologic influence on stratigraphy and reservoir compartmentalization in this basin to be the existence of numerous karst collapse chimneys over the 26-mi(2) (67 km(2)) area covered by the 3-D seismic grid, These near-vertical karst collapses originated in, or near, the deep Ordovician-age Ellenburger carbonate section and created vertical chimneys extending as high as 2500 fl (610 m) above their point of origin causing significant disruptions in the overlying elastic strata. These karst disruptions lend to be circular in map view, having diameters ranging from approximately 500 ft (150 m) to as much as 3000 ft (915 m) in some cases. Within our study area, these karat features were spaced 2000 ft (610 m) to 6000 ft (1830 m) apart, on average. The tallest karst collapse zones reached into the Middle Pennsylvanian Strawn section, which is some 2500 ft (760 m) above the Ellenburger carbonate where the karst generation began. We used 3-D seismic imaging to show how these karst features affected the strata above the Ellenburger and how they have created a well-documented reservoir compartment in the Upper Caddo, an upper Atoka valley-fill sandstone that typically occurs 2000 ft (610 m) above the Ellenburger. By correlating these 3-D seismic images with outcrops of Ellenburger karat collapses, we document that the physical dimensions (height, diameter, cross-sectional area) of the seismic disruptions observed in the 3-D data equate to the karst dimensions seen in outcrops. We also document that this Ellenburger carbonate dissolution phenomenon extends over at least 500 mi (800 km), and by inference we suggest karst models like we describe here may occur in any basin that has a deep, relatively thick section of Paleozoic carbonates that underlie major unconformities

Geophysical Studies at Kartchner Caverns State Park, Arizona, 1999, Lange, A. L.
Geophysical studies over Kartchner Caverns State Park mapped structure and groundwater patterns beneath valley alluvium and determined the geophysical expression of the caverns at the surface. Three techniques were employed: electromagnetics (EM), gravity, and natural potential (NP). Electromagnetic traverses in the area failed to detect the voids, owing to the very low conductivity of the carbonate rock. On the other hand, the EM method succeeded in defining the boundary between carbonate rock and alluvium, and in detecting the high-conductivity underflow beneath the drainage system. Resolution of the gravity survey over outcrop was limited to ~0.1 mgal, due to severe terrain effects. Nevertheless, two of the three major cavern passages were expressed as gravity lows at the surface, and fifteen additional small gravity anomalies could be the effect of fracture zones or unexposed caves. East of the carbonate block, the gravity profiles delineated the range-front fault and afforded interpretations of bedrock structure beneath valley fill. Natural-potential profiles, coincident with those of the gravity survey, produced a prominent compound anomaly over the mapped caverns. The 55 mV NP high was flanked by broad lows measuring ~15 mV over two of the main cavern galleries. The high was incised by a third low over a middle passage of the caverns. The lows are tentatively attributed to filtration downward toward the cave ceilings; the highs, to evapotranspiration from a deeper groundwater reservoir. Elsewhere over the outcrop, continuous NP trends are the likely expressions of faulting and fracturing, possibly accompanied by solution activity

Development of collapse sinkholes in areas of groundwater discharge, 2002, Salvati R. , Sasowsky I. D. ,
Collapse sinkholes are found in groundwater recharge zones throughout the world. They cause substantial loss of property each year, and occasional fatalities. In such settings, the formation of these features occurs through the downward migration of regolith into karst voids. The presence of a void in the bedrock. and sufficient seepage pressure or gravitative force in the regolith, is required for their creation. We investigated the development of cover collapse sinkholes in an unusual setting, areas of groundwater discharge rather than recharge. Upward hydraulic gradients and the likelihood of groundwater saturated with respect to calcite are difficult to reconcile with standard models for collapse development. Short flowpaths or renewed groundwater aggressivity towards calcite (via mischungskorrosion, thermally driven circulation, or deep-seated gaseous sources) are hypothetical mechanisms that could generate the subsurface voids that are needed to allow cover collapse development in discharge areas. For the two field sites in central Italy that we investigated, calculated carbon dioxide partial pressures in springs ranged from 7.38 X 10(-2) to 7.29 X 10(-1) atm. This indicates that deep-seated gaseous sources are most likely the mechanism allowing the development of the sinkholes. Groundwater is recharged in surrounding limestone massifs. The water moves through the carbonates and becomes saturated with calcite. As it circulates deeply in to the adjacent valleys, it mixes with deep-seated waters and gaseous fluxes from major fault systems, acquiring renewed aggressivity towards calcite. Finally, the water ascends into confined aquifers in the valley fill, and dissolves carbonate material present within, leading to surface collapse. (C) 2002 Elsevier Science B.V. All rights reserved

Post-Miocene stratigraphy and depositional environments of valley-fill sequences at the mouth of Tampa Bay, Florida, 2003, Ferguson Tw, Davis Ra,
Post-Miocene sea-level low stands allowed rivers and karst processes to incise the exposed carbonate platform along the Gulf Coast of Florida. Few Miocene to mid-Pleistocene deposits survived erosion along the present coast except within incised valleys. Since their formation, these valleys have been filled and incised multiple times in response to sea-level changes. The thick sedimentary sequences underlying the mouth of Tampa Bay have been recorded as a range of depositional environments and multiple sea-level incursions and excursions during pre-Holocene time and subsequent to the accumulation of the Miocene carbonate sequences. Sediment analysis of cores collected from a north-south transect across the mouth of Tampa Bay has enabled the identification of lithofacies, ranging from well-sorted, quartz sand to dense, fossiliferous, phosphatic grainstone. These facies were deposited in freshwater, estuarine, and shallow, open marine environments. As a result of channel development and migration within the paleovalley, and cut-and-fill associated with individual transgressions and regressions, correlation of the lithofacies does not extend across the entire transect. Fining-upward sequences truncated by tidal ravinement surfaces that extend throughout the paleovalley can, however, be identified. Age determinations based on 14-C analysis, amino-acid racemization, and strontium isotope analysis dating of numerous samples yield ages of Miocene, Pliocene, early Pleistocene, and late Pleistocene, as well as Holocene for sequences that accumulated and were preserved in this valley-fill complex. Numerous inconsistencies in the stratigraphic organization of the age determinations indicate that there are bad dates, considerable reworking of shells that were dated, or both. For this reason as well as the lack of detailed correlation among the three relatively complete cores, it is not possible to place these strata in a sequence stratigraphic framework. (C) 2003 Elsevier B.V. All rights reserved

Coastal cliff geohazards in weak rock: the UK Chalk cliffs of Sussex, 2004, Mortimore R. N. , Lawrence J. , Pope D. , Duperret A. , Genter A. ,
Geohazards related to chalk coastal cliffs from Eastbourne to Brighton, Sussex are described. An eight-fold hazard classification is introduced that recognizes the influence of chalk lithology, overlying sediments and weathering processes on location, magnitude and frequency of cliff collapses. Parts of the coast are characterized by cliffs of predominantly a single chalk formation (e.g. Seven Sisters) and other sections are more complex containing several Chalk formations (Beachy Head). Rock properties (intact dry density or porosity) and mass structure vary with each formation and control cliff failure mechanisms and scales of failures. The Holywell Nodular Chalk, New Pit Chalk and Newhaven Chalk formations are characterized by steeply inclined conjugate sets of joints which lead to predominantly plane and wedge failures. However, the dihedral angle of the shears, the fracture roughness and fill is different in each of these formations leading to different rock mass shear strengths. In contrast the Seaford and Culver Chalk formations are characterized by low-density chalks with predominantly clean, vertical joint sets, more closely spaced than in the other formations. Cliff failure types range from simple joint controlled conventional plane and wedge failures to complex cliff collapses and major rock falls (partial flow-slides) involving material failure as well as interaction with discontinuities. Other hazards, related to sediments capping the Chalk cliffs, include mud-slides and sandstone collapses at Newhaven, and progressive failure of Quaternary Head and other valley-fill deposits. Weathering, including the concentration of groundwater flow down dissolution pipes and primary discontinuities, is a major factor on rate and location of cliff collapses. A particular feature of the Chalk cliffs is the influence of folding on cliff stability, especially at Beachy Head, Seaford Head and Newhaven. A new classification for cliff collapses and a new scale of magnitude for collapses are introduced and used to identify, semi-quantify and map the different hazards. Climate (and climate change) and marine erosion affect the rate of development of cliff collapse and cliff-line retreat. This was particularly evident during the wet winters of 1999-2000-2001 when the first major collapses along protected sections of coastline occurred (Peacehaven Cliffs protected by an undercliff wall; Black Rock Marina the Chalk cliffs and the Quaternary Head). It is the geology, however, that controls the location and scale of erosion and cliff failure

Results 1 to 6 of 6
You probably didn't submit anything to search for