Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That Cave Research Foundation (CRF) is an organization of cavers united primarily for scientific exploration and study of caves [13].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for vulnerability mapping (Keyword) returned 25 results for the whole karstbase:
Showing 1 to 15 of 25
Results of a study about tracing tests transfer functions variability in karst environment, 1997, Doerfliger N.
Artificial tracing tests are often used to simulate migration of a point-source contaminant under various hydrological conditions in karst hydrogeological impact assessment or to define groundwater protection zones. Due to economic reasons, it is rather difficult to carry out adequate tracing tests to determine what are the possible recovery curves over range of discharges at the outlet, are the tracer test results representative of the spring watercatchment being protected ? Our objective was to characterize the tracing-systems in a karst environment by a mean transfer function; such transfer function may be used to predict the breakthrough curve of a point-source contaminant taking into account an error factor. A Jura mean transfer function with + and -95% interval confidence functions can be established and differentiated from the Alps mean transfer function. The use of this transfer function to predict the response of a point-source contaminant requires considerations of water catchment size, thickness or the aquifer and discharge at the outlet. The results of this variability analysis confirm that the transfer functions by themselves may not be used to protect the whole karst spring water catchment, as this one is affected by the heterogeneity of the physical parameters. At the scale of a water catchment, transfer functions are not the major tool to protect the groundwater. But with a multiattribute approach of vulnerability mapping, transfer functions contribute to the development of groundwater protection strategy.

EPIK, methode de cartographic de la vulnerabilite des aquiferes karstiques pour la delimitation des zones de protection., 1997, Doerfliger Nn. , Zwhalen F.
The EPIK method is a general multiattribute method used for the karst aquifer vulnerability mapping and to provide a base to assesss the groundwater protection zones in the karst environment. The goal of this method developed with the support of the Federal Officle for Environment, Forest and Landscape is to produce some vulnerability maps for karst spring watercatchments. According to the selected attributes, the obtained vulnerability zones can be a base to outline the groundwater protection zones. After having determined the spring watercatchment borderlines, we proceed in four steps: 1) mapping of the epikarst (geomorphological approach), 2) protective cover mapping, 3) infiltration conditions mapping and 4) characterization of the karst network development. Each of this attribute is subdivided in classes that are weightd by a theoretical coefficient. The four attributes maps are overlayed using a GIS and for each zone vulnerability degree is calculated; the resulting map is the vulnerability map. This method was tested in Switzerland on several sites .whose some results are here introduced.

Mapping groundwater vulnerability: the Irish perspective, 1998, Daly D, Warren Wp,
The groundwater protection scheme used in the Republic of Ireland since the 1980s had not encompassed the vulnerability mapping concept. Yet internationally, vulnerability maps were becoming an essential part of groundwater protection schemes and a valuable tool in environmental management. Consequently, following a review of protection schemes world-wide, the scheme used in Ireland was updated and amended to include vulnerability maps as a crucial component of the scheme. The approach taken to vulnerability assessments and mapping in the Republic of Ireland has been dictated by the following fundamental questions: Vulnerability of what? Vulnerability to what? Which factors determine the degree of vulnerability? What is the appropriate scale for map production? How can limitations and uncertainties be taken into account? How can vulnerability assessments be integrated into environmental and resource management? The following decisions were made: (i) we should map the vulnerability of groundwater, not aquifers or wells/springs; (ii) the position in the groundwater system specified to be of interest is the water-table (i.e. first groundwater encountered) in either sand/gravel aquifers or in bedrock; (iii) we should map the vulnerability of groundwater to contaminants generated by human activities (natural impacts are a separate issue); (iv) as the main threat to groundwater in Ireland is posed by point sources, we should map the vulnerability of groundwater to contaminants released at 1-2 m below the ground surface; (v) the characteristics of individual contaminants should not be taken into account; (vi) the natural geological and hydrogeological factors that determine vulnerability are the sub-soils above the watertable, the recharge type (whether point or diffuse) and, in sand/gravels, the thickness of the unsaturated zone; (vii) based on these factors, four vulnerability categories are used (extreme, high, moderate and low); (viii) map scales of 1:50 000 and 1:10 000 are preferred; (ix) limitations and uncertainties are indicated by appropriate wording on the maps and a disclaimer; (x) vulnerability maps should be incorporated into groundwater protection schemes, which should be used in decision-making on the location and control of potentially polluting developments. Vulnerability maps have now been produced for a number of local authority areas. They are an important part of county groundwater protection schemes as they provide a measure of the likelihood of contamination, assist in ensuring that protection schemes are not unnecessarily restrictive of human economic activity, help in the choice of engineering preventative measures, and enable major developments, which have a significant potential to contaminate, to be located in areas of relatively low vulnerability and therefore of relatively low risk, from a groundwater perspective

Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method), 1999, Doerfliger N, Jeannin Py, Zwahlen F,
Groundwater resources from karst aquifers play a major role in the water supply in karst areas in the world, such as in Switzerland. Defining groundwater protection zones in karst environment is frequently not founded on a solid hydrogeological basis. Protection zones are often inadequate and as a result they may be ineffective. In order to improve this situation, the Federal Office for Environment, Forests and Landscape with the Swiss National Hydrological and Geological Survey contracted the Centre of Hydrogeology of the Neuchatel University to develop a new groundwater protection-zones strategy in karst environment. This approach is based on the vulnerability mapping of the catchment areas of water supplies provided by springs or boreholes. Vulnerability is here defined as the intrinsic geological and hydrogeological characteristics which determine the sensitivity of groundwater to contamination by human activities. The EPIK method is a multi-attribute method for vulnerability mapping which takes into consideration the specific hydrogeological behaviour of karst aquifers. EPIK is based on a conceptual model of karst hydrological systems, which suggests considering four karst aquifer attributes: (1) Epikarst, (2) Protective cover, (3) Infiltration conditions and (4) Karst network development. Each of these four attributes is subdivided into classes which are mapped over the whole water catchment. The attributes and their classes are then weighted. Attribute maps are overlain in order to obtain a final vulnerability map. From the vulnerability map, the groundwater protection zones are defined precisely. This method was applied at several sites in Switzerland where agriculture contamination problems have frequently occurred. These applications resulted in recommend new boundaries for the karst water supplies protection-zones

From a conceptual model of karst hydrological systems to water-vulnerability mapping, 1999, Jeannin Py. , Zwahlen F. , Doerfliger N.
A conceptual model of karst hydrological systems is presented hereIt considers that water flows through four cascading subsystems: soils, epikarst, unsaturated zone, and saturated zoneThis model lead us to define four criteria which appear to be significant for intrinsic vulnerability assessment with respect to a spring or a well: characteristics of epikarst (E), characteristics of protective cover (P), recharge or infiltration type (I) and presence/absence of a well-developed conduit network (K)The method has proved to be adequate for karst in Central EuropeIn the future, it should be tested in other areas and compared to numerical approaches of karst systems

Karst groundwater protection: the case of the Rijeka region, Croatia, 2000, Biondić, Bož, Idar

The problem of protection of water resources in the karst area of Croatia has been particularly acute for the last 30 years. Specific natural conditions under which the dynamics of groundwater is formed and developed were reasons for difficulties in preparation of uniform criteria of protection. Present experience makes it possible to establish a more organized approach to the problem. This applies, in particular, to the surroundings of the town Rijeka, where considerable funds were invested into research on new groundwater abstractions, but also toward their protection. In this paper the general approach to karst water protection in Croatia will be presented. This consists of an explanation of natural conditions, necessary research activities, general criteria and measures for protection, improvement of sanitary conditions in zones of high protection, design of new constructions in protection zones, urban planning and protection, etc. A part of the paper will be directed to the regulation procedure and organizational problems in such an active approach to karst water protection.


Vulnerability mapping in karst areas and its uses in Switzerland1, 2000, Tripet Jeanpierre, Doerfliger Nathalie, Zwahlen Franç, Ois, Delporte Cyril

A new approach for delineating protection zones in karst regions based upon vulnerability mapping of catchment areas is being developed at the Swiss National Hydrological and Geological Survey. Due to the particular hydrogeological characteristics of karst aquifers, specific protection measures are required. Protection zones in karst delineated on the basis of existing guidelines generally do not take into consideration hydrogeological factors, and therefore provide only limited efficiency. The newly proposed "EPIK" method is based on vulnerability mapping of the catchment area of the source, where various objective vulnerability factors are taken into consideration: epikarst (E), protective cover (P), infiltration conditions (I), and karstic network (K). A field application on the case of Saint-Imier pilot area is presented.


Karst aquifers vulnerability or sensitivity?, 2003, Kovač, Ič, Gregor, Ravbar Nataš, A

The concept of karst aquifer vulnerability mapping is commonly used for the determination of water protection zones and planning of land use in the background of the captured karst sources and wells. Several different methodologies for karst aquifer vulnerability mapping exist and the examination of scientific literature shows considerable variations in the definition of the term vulnerability. The authors suggest the distinction between the terms vulnerability and sensitivity of karst aquifers, since the former includes more information, which are required for efficient protection. The interpretation of the applied terms is founded on the conceptual background of the environmental vulnerability studies, which are declared with the Slovene 1993 Environmental Protection Act.


A conceptual model of flow and transport in a karst aquifer based on spatial and temporal variations of natural tracers, 2003, Perrin, Jerome

Karst aquifers represent an important groundwater resource world-wide. They are highly vulnerable to contamination due to fast transport through the system and limited attenuation of contaminants. The two main hydrogeological approaches developed for studying flow and transport are: inference of the
system structure from karst spring hydrographs and chemographs; numerical modelling of flow and transport using a theoretical distribution of flow and transport field parameters. These two approaches lack of validation by detailed field measurements and observations. The main objective of this thesis is to “fill the gap” existing between field and model data. Observations of flow and transport parameters at several locations within the system were used to develop a conceptual model. This model was then compared to the existing models.
The main field test site is the Milandre karst aquifer, located in the Swiss tabular Jura. Natural tracers (major ions, oxygen-18, specific conductance) and discharge were measured on the underground river, its main tributaries, percolation waters, and the main spring. These data were collected on a long-term basis in order to assess the spatial variability of the parameters, and on a short time scale (i.e. flood events) in order to investigate the dynamic processes. Complementary sites (Brandt and Grand Bochat) were used for more observations at the base of the epikarst.
The proposed conceptual model considers four sub-systems: the soil zone, the epikarst, the unsaturated zone, and the phreatic zone. Each has its own specificity with respect to flow and transport. The soil zone controls the actual infiltration into the system. It contributes efficiently to groundwater storage. It mixes quickly stored water with fresh infiltrated water. Its thickness determines land-use: thick soils are generally cultivated whereas thin soils are under forested areas. The solutes concentration of soil waters depends on land-use for pollution-related parameters (nitrate, chloride, sulfate, potassium, sodium). Moreover the soil zone is the main source of CO2 which controls the limestone dissolution-related parameters. The epikarst zone contributes largely to groundwater storage. It distributes groundwater into vadose flow through conduits, and base flow through low permeability volumes (LPV) in the unsaturated zone. It is the sub-system where dissolution-related parameters are mostly acquired.
The unsaturated zone is seen as a transmissive zone connecting the epikarst to the horizontal conduit network of the phreatic zone. In case of flood events, some dissolution still occurs in this sub-system.
The phreatic zone is the partly flooded conduit network draining groundwater to the spring. It collects waters issued from the unsaturated zone, mixes the tributaries, and drain the water towards the discharge area. The role of phreatic storage appears to be limited for both hydraulics and transport.
Tributary mixing is a prominent process that shapes spring chemographs during flood events. In steady-state conditions, base flow is mainly sustained by the epikarst reservoir. Tracer concentrations are stable as the chemical equilibrium is already reached in the epikarst. Waters issued from the different tributaries mix in the conduit network, and the spring chemistry is the result of this mixing.
During flood events, transient flow induces non-linear mixing of the tributaries. The respective contributions of the tributaries change throughout the flood, and the spring chemographs vary accordingly. In case of important recharge, waters issued from other sources than the epikarst participate to the flood. First, soil water reaches the phreatic zone. Its characteristics are a dampened isotopic signal, and ionic concentrations differing from those of the epikarst. Second, fresh water directly issued from rainfall, may reach the phreatic zone. Its characteristics are a varying isotopic signal, and diluted ionic concentrations. The mixing components participating to the flood are controlled by the actual infiltration volume (or height). The limestone dissolution process is effective for the fresh and soil components of flow. However mixing processes play a more important role than dissolution for shaping the spring chemographs.
From a practical point of view, the project confirmed the prominent role of the soil zone and the epikarst on the solute transport in karst systems. This was already integrated in karst vulnerability mapping methods recently developed (EPIK, PI, VULK).

http://doc.rero.ch/record/2604/files/these_PerrinJ.pdf


Vulnerability mapping of the Turonian limestone aquifer in the Phosphates Plateau (Morocco), 2004, Ettazarini S. , Mahmouhi El. N.

Vulnerability mapping in the recharge area of the Korentan spring, Slovenia, 2004, Petrič, Metka, Š, Ebela Stanka

Karst aquifers are very vulnerable to pollution due to well developed system of karst channels and fissures which enable fast groundwater flow and also fast transport of pollutants. An expert bases for their protection are vulnerability maps. Different methods for the construction of these maps were developed, and to assess the vulnerability of the recharge area of the Korentan spring near Postojna the EPIK method was used. In this method, which was many times successfully tested on karst, the degree of vulnerabilty is defined on the basis of four parameters: developement of the epikarst, effectiveness of the protective cover, infiltration conditions, and development of the karst network. For the assessment of individual parameters different research methods were used, such as detailed structural-lithological and geomorphological mapping, and combined analysis of hydraulic and physico-chemical responses of the spring to recharge events. Final result is the vulnerability map, which defines the areas of very high, high and moderate vulnerability within the recharge area of the Korentan spring and can be used to set up the protection zones.


Karsthydrogeologisch-spelologische Untersuchungen in der Hallsttter Zone von Ischl - Aussee (Obersterreich, Steiermark)., 2005, Laimer, H. J.
The paper deals with the karst of the Hallstatt unit, stretching from Bad Ischl to Bad Aussee and northern and western boundaries, respectively. As such, it is meant as both a survey of karstgeomorphology and an analysis of karsthydrology. Data were collected during the field work for a PhD thesis about karst water vulnerability mapping on the basis of a specific method developed in Austria. Triassic and Malm formations of limestone blocks in the Hallstatt unit are underpinned by layers of marl and evaporites. The hydrogeological situation leads to conditions of shallow karst with poor storage capacity in the aquifers. The karst morphology is governed by a type of karst that is predominant in alpine foothills and, as it is subject to constant lithological change, leads to the formation of contact karst. In shallow karst, ponor dolines and active water caves, which are linear oriented, assume major karsthydrological importance. In the Hallstatt unit most water caves drain small autochthonous recharge systems. The cave-systems show multi phase genesis without large cave levels.[Junihhle (1615/4), Htterschacht (1514/6), Wasserloch (1614/6), Groes Knerzenloch (1615/7), Hherstein Wasserhhle (1615/1)]

Karst groundwater vulnerability mapping: application of a new method in the Swabian Alb, Germany, 2005, Goldscheider Nico,

Karsthydrogeologisch-spelologische Untersuchungen in der Hallsttter Zone von Ischl - Aussee (Obersterreich, Steiermark), 2005, Laimer, H. J.
The paper deals with the karst of the Hallstatt unit, stretching from Bad Ischl to Bad Aussee and northern and western boundaries, respectively. As such, it is meant as both a survey of karstgeomorphology and an analysis of karsthydrology. Data were collected during the field work for a PhD thesis about karst water vulnerability mapping on the basis of a specific method developed in Austria. Triassic and Malm formations of limestone blocks in the Hallstatt unit are underpinned by layers of marl and evaporites. The hydrogeological situation leads to conditions of shallow karst with poor storage capacity in the aquifers. The karst morphology is governed by a type of karst that is predominant in alpine foothills and, as it is subject to constant lithological change, leads to the formation of contact karst. In shallow karst, ponor dolines and active water caves, which are linear oriented, assume major karsthydrological importance. In the Hallstatt unit most water caves drain small autochthonous recharge systems. The cave-systems show multi phase genesis without large cave levels.

KARST WATER MANAGEMENT IN SLOVENIA IN THE FRAME OF VULNERABILITY MAPPING, 2006, Ravbar Nataa, Kova?i? Gregor
Slovene karst sources are of great national importance for drinking water supply. Since karst aquifer systems are very susceptible to contamination, these sources require appropriate and careful managing. Unfortunately, in the acts of Slovene legislation, the special characteristics of water flow within karst regions are not very seriously taken into consideration in determining the criteria for karst water sources protection. In contrast, in some other countries, the concept of groundwater vulnerability mapping has been successfully used for protection zoning and land use planning in karst. Regarding the differences between particular karst aquifer systems, data availability and economic resources, different methods of karst water vulnerability assessment and mapping have already been developed. Already these methods have been many times tested and implemented in different test sites worldwide. However, experience in application using different methodologies for vulnerability mapping of karst aquifers is very modest in Slovenia. The present paper deals with potential methodological problems that might arise while applying the most commonly used methods for karst water vulnerability assessment to Slovene karst regions.

Results 1 to 15 of 25
You probably didn't submit anything to search for