Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That free pitch is where a rope or ladder hangs vertically and free of the walls [25].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for vulnerability (Keyword) returned 126 results for the whole karstbase:
Showing 1 to 15 of 126
Using turbidity dynamics and geochemical variability as a tool for understanding the behavior and vulnerability of a karst aquifer, , Fournier M, Massei N, Bakalowicz M, Dussartbaptista L, Rodet J, Dupont Jp,

Predicting travel times and transport characterization in karst conduits by analyzing tracer-breakthrough curves, , Morales Tomas, De Valderrama Inigo, Uriarte Jesus A. , Antiguedad Inaki, Olazar Martin,
SummaryThis paper analyzes data obtained in 26 tracer tests carried out in 11 karstic connections following solutional conduits in karst aquifers in the Basque Country. These conduits are preferential drainage pathways in these aquifers and so they confer a marked anisotropy and high vulnerability to them. Consequently, their consideration in protection and management studies and projects is a priority.The connections studied cover a wide hydrogeological spectrum (a wide range of sizes, slopes, geomorphic and hydrologic types) and the tests have been carried out at different hydrodynamic states. It is noteworthy that they all follow a similar trend, which has allowed for the development of a statistical approximation for the treatment of the whole information.Relationships have been established involving velocity, solute time of arrival, attenuation of peak concentration and time of passage of tracer cloud. These relationships are a valuable tool for management and supporting decision-making and allow for making estimates in connections in which the information available was scarce. This information is especially useful, given that the complexity of transport in karst conduits gives way to important deviations between real data (empirical observations) and the data obtained by simple approaches based on the Fickian-type diffusion equation

The role of tributary mixing in chemical variations at a karst spring, Milandre, Switzerland, , Perrin J. , Jeannin P. Y. , Cornaton F. ,
SummarySolute concentration variations during flood events were investigated in a karst aquifer of the Swiss Jura. Observations were made at the spring, and at the three main subterraneous tributaries feeding the spring. A simple transient flow and transport numerical model was able to reproduce chemographs and hydrographs observed at the spring, as a result of a mixing of the concentration and discharge of the respective tributaries. Sensitivity analysis carried out with the model showed that it is possible to produce chemical variations at the spring even if all tributaries have constant (but different for each of them) solute concentrations. This process is called tributary mixing. The good match between observed and modelled curves indicate that, in the phreatic zone, tributary mixing is probably an important process that shapes spring chemographs. Chemical reactions and other mixing components (e.g. from low permeability volumes) have a limited influence.Dissolution-related (calcium, bicarbonate, specific conductance) and pollution-related parameters (nitrate, chloride, potassium) displayed slightly different behaviours: during moderate flood events, the former showed limited variations compared to the latter. During large flood events, both presented chemographs with significant changes. No significant event water participates in moderate flood events and tributary mixing will be the major process shaping chemographs. Variations are greater for parameters with higher spatial variability (e.g. pollution-related). Whereas for large flood events, the contribution of event water becomes significant and influences the chemographs of all the parameters. As a result, spring water vulnerability to an accidental pollution is low during moderate flood events and under base flow conditions. It strongly increases during large flood events, because event water contributes to the spring discharge

Recharge of Phreatic Aquifers in (Semi-)Arid Areas, ,
Groundwater use is of fundamental importance to meet the rapidly expanding urban, industrial and agricultural water requirements in (semi) arid areas. Quantifying the current rate of groundwater recharge and define its variability in space and time are thus prerequesites for efficient groundwater resource managment in these regions, where such resources are often the key to economic development. Attention focuses on recharge of phreatic aquifers, often the most readily-available and affordable source of water in (semi) arid regions. These aquifers are also the most susceptible to contamination, with the recharge rate determining their level of vulnerability. (Semi) arid zone recharge can be highly variable, the greater the aridity, the smaller and potentially more variable the natural flux. Its determination is an iterative process, involving progressive data collection and resource evaluation; there is also a need to use more than one technique to verify results. Direct, localised and indirect recharge mechanisms from a spectrum of known sources are addressed in the framework of recharge from precipitation, intermittant flow and permanent water bodies. The approach taken for each of these reflects the nature and current understanding of the processes involved. The volume also reviews current recharge estimation challenges, outlines recent developments and offers guidance for potential solutions.

Transport and variability of fecal bacteria in carbonate conglomerate aquifers, , Goeppert N. , Goldscheider N.

Clastic sedimentary rocks are generally considered non-karstifiable and thus less vulnerable to pathogen contamination than karst aquifers. However, dissolution phenomena have been observed in clastic carbonate conglomerates of the Subalpine Molasse zone of the northern Alps and other regions of Europe, indicating karstification and high vulnerability, which is currently not considered for source protection zoning. Therefore, a research program was established at the Hochgrat site (Austria/Germany), as a demonstration that karst-like characteristics, flow behavior and high vulnerability to microbial contamination are possible in this type of aquifer. The study included geomorphologic mapping, comparative multi-tracer tests with fluorescent dyes and bacteria-sized fluorescent microspheres, and analyses of fecal indicator bacteria (FIB) in spring waters during different seasons. Results demonstrate that (i) flow velocities in carbonate conglomerates are similar as in typical karst aquifers, often exceeding 100 m/h; (ii) microbial contaminants are rapidly transported towards springs; and (iii) the magnitude and seasonal pattern of FIB variability depends on the land use in the spring catchment and its altitude. Different ground water protection strategies than currently applied are consequently required in regions formed by karstified carbonatic clastic rocks, taking into account their high degree of heterogeneity and vulnerability.

style=


WATER-BUDGET, FUNCTIONING AND PROTECTION OF THE FONTAINE-DE-VAUCLUSE KARST SYSTEM (SOUTHEASTERN FRANCE), 1992, Blavoux B, Mudry J, Puig Jm,
The karst aquifer of the well-known Fontaine de Vaucluse has been recently studied, results have been got about delimitation of the system and its working. Geological data (lithology and structure) have allowed to delimit an 1115 Km2 intake area including Ventoux-Lure north facing range (1,909-1,826 m) and the Plateau which is prolonging it southwards (Fig. 1 and 2). The average altitude of the whole area, obtained by balancing elevation belt surfaces, is about 870 m. This elevation squares with results of tracing tests (Fig. 3), environmental physical, chemical and isotopic tracings, that allow to value a 850 m average altitude for the intake area (Fig. 4). The moisture balance has been computed from an altitude belts climatic model, using local rain an temperature gradients (Fig. 5 and Table II), because the weather network is not representative. So, rainfalls rise of about 55 mm per 100 m elevation and temperature decreases of about 0.5-degrees-C per 100 m. The consequence of these two antagonist phenomena is the quasi constant value of actual evapotranspiration on each altitude belt. With the Fig. 7 organigram, curves of effective rainfalls and infiltration coefficient versus elevation can be plotted (Fig. 6). This computation shows that 3/4 of the total and the whole of dry season effective rainfalls are provided by the part of the intake area situated above the average altitude: on the lowest belt, effective rainfalls are only 120 mm per year and increase to 1380 mm on the upper section (Fig. 8 and Table 1). The weighted effective rainfalls are about 570 mm per year for the whole intake area. Hydrodynamical and physico-chemical studies show, despite its large size, the weak inertia of the system, so proves its good karstification, that confirms for the whole system the pin-point speleological observations. The discharge of the spring, which average value is 21 m3.s-1 (only 18 for the last ten years), can exceed 100 m3.s-1 and the minimum has never been lower than 3.7 m3.s-1 (Fig. 9). When it rains on the intake area, the increase of the discharge is very sudden in a rainy period : one to four days. This short delay is due to seepage through epikarst and unsaturated zone. During dry periods, the spring reaction is deadened, due to storage in the unsaturated zone. The silica content distribution was plotted during several hydrokinematical phases (Fig. 10). It shows: an almost unimodal distribution for the 8 km2 fissured limestone aquifer of Groseau; a multimodal one for the 1115 km2 karst aquifer of Fontaine de Vaucluse. This proves that karstification is more important than size in the response of the system. Weak summer rainfalls do not influence the discharge, nevertheless they influence chemistry of the spring water, and so interrupts the water depletion phasis. Then, the decrease of discharge can continue after the end of the chemical depletion phasis, water which is overflowing after summer rainfalls (in a dry period) is influenced hy the chemistry of seepage water : on the graph of a principal components analysis, done on chemical variables. an hysteresis phenomenon can be seen (Fig. 11). A discriminant analysis (Fig. 12) confirms that these autumn waters, with high ratio seepage tracers, are not reserve waters from the saturated zone. The ratio of reserve water in the total discharge, is preponderant: 3/4 and 2/3 respectively of the yearly runoff volumes for 1981 and 1982 (Fig. 13), but an important part of these reserves can be stored in the unsaturated zone. This storage capacity can be valued by different means: transposing to Vaucluse (1115 km2) the volume measured on another karst system in the Pyrenees (13 km2); it gives about 100 million m2; using setting parameters of Bezes model (1976) on the same aquifer: it gives 113 million m3; using depletion curves, that show, for instance during the 1989 summer and autumn dry period, a 80 million m3 volume. In all cases, we get a value of about one hundred million m3 for the storage capacity of the unsaturated zone. With a 20 m range of fluctuation for the water table and with a 10(-2) specific yield, on a 500 to 1,000 km2 saturated zone, the zone of fluctuation can release about 10 to 20 million m3. Then, the volume of water stored in the whole saturated zone, with a 300 m minimum thickness (depth of the waterlogged pit of the Fontaine), a 500 km2 minimum surface and a 10(-3) specific yield, is about 150 million m3, including 27 million m3 stored in the channels. So, the unsaturated zone represents a significant part of the whole storage capacity and most of the yearly renewable reserves. Paradoxically, the biggest french spring is not tapped at all; as its intake area is neither a regional nor a national park, no general protection covers it : because of its good karstification, the vulnerability of the system is important. Good quality of water is attributable to the low population and human activities density on the intake area (4 inh.km-2). A great part of the intake area is uncultivated (large forest and ''garrigues'' areas). Due to the lack of surface water and scantness of soils, agriculture is not intensive (lavender, thyme, sage and bulk wheat fields. meadowlands). On the mountainous zone, roads are salted in winter and snowmelt water can reach a significantly high chloride ratio than in a natural climatic functioning (for instance 25 mg.l-1 in Font d'Angiou where the ratio would have been 3 mg.l-1). As tourism is developing both on the mountain and on the plateau, the management of the highest intake area must be carefully held: its part is preponderant in the feeding of the system

DIVERSITY - A NEW METHOD FOR EVALUATING SENSITIVITY OF GROUNDWATER TO CONTAMINATION, 1993, Ray J. A. , Odell P. W. ,
This study outlines an improved method, DIVERSITY, for delineating and rating groundwater sensitivity. It is an acronym for Dlspersion/VElocity-Rated SensitivITY, which is based on an assessment of three aquifer characteristics: recharge potential, flow velocity, and flow directions. The primary objective of this method is to produce sensitivity maps at the county or state scale that illustrate intrinsic potential for contamination of the uppermost aquifer. Such maps can be used for recognition of aquifer sensitivity and for protection of groundwater quality. We suggest that overriding factors that strongly affect one or more of the three basic aquifer characteristics may systematically elevate or lower the sensitivity rating. The basic method employs a three-step procedure: (1) Hydrogeologic settings are delineated on the basis of geology and groundwater recharge/discharge position within a terrane. (2) A sensitivity envelope or model for each setting is outlined on a three-component rating graph. (3) Sensitivity ratings derived from the envelope are extrapolated to hydrogeologic setting polygons utilizing overriding and key factors, when appropriate. The three-component sensitivity rating graph employs two logarithmic scales and a relative area scale on which measured and estimated values may be plotted. The flow velocity scale ranging from 0.01 to more than 10,000 m/d is the keystone of the rating graph. Whenever possible, actual time-of-travel values are plotted on the velocity scale to bracket the position of a sensitivity envelope. The DIVERSITY method was developed and tested for statewide use in Kentucky, but we believe it is also practical and applicable for use in almost any other area

Standardization of Criteria of Establishment of Vulnerability to Pollution Maps. Preliminary Documentary Study. Report R37928, Bureau de Recherche Geologiques et Minieres, 1994, Lallemandbarres A.

Results of a study about tracing tests transfer functions variability in karst environment, 1997, Doerfliger N.
Artificial tracing tests are often used to simulate migration of a point-source contaminant under various hydrological conditions in karst hydrogeological impact assessment or to define groundwater protection zones. Due to economic reasons, it is rather difficult to carry out adequate tracing tests to determine what are the possible recovery curves over range of discharges at the outlet, are the tracer test results representative of the spring watercatchment being protected ? Our objective was to characterize the tracing-systems in a karst environment by a mean transfer function; such transfer function may be used to predict the breakthrough curve of a point-source contaminant taking into account an error factor. A Jura mean transfer function with + and -95% interval confidence functions can be established and differentiated from the Alps mean transfer function. The use of this transfer function to predict the response of a point-source contaminant requires considerations of water catchment size, thickness or the aquifer and discharge at the outlet. The results of this variability analysis confirm that the transfer functions by themselves may not be used to protect the whole karst spring water catchment, as this one is affected by the heterogeneity of the physical parameters. At the scale of a water catchment, transfer functions are not the major tool to protect the groundwater. But with a multiattribute approach of vulnerability mapping, transfer functions contribute to the development of groundwater protection strategy.

EPIK, methode de cartographic de la vulnerabilite des aquiferes karstiques pour la delimitation des zones de protection., 1997, Doerfliger Nn. , Zwhalen F.
The EPIK method is a general multiattribute method used for the karst aquifer vulnerability mapping and to provide a base to assesss the groundwater protection zones in the karst environment. The goal of this method developed with the support of the Federal Officle for Environment, Forest and Landscape is to produce some vulnerability maps for karst spring watercatchments. According to the selected attributes, the obtained vulnerability zones can be a base to outline the groundwater protection zones. After having determined the spring watercatchment borderlines, we proceed in four steps: 1) mapping of the epikarst (geomorphological approach), 2) protective cover mapping, 3) infiltration conditions mapping and 4) characterization of the karst network development. Each of this attribute is subdivided in classes that are weightd by a theoretical coefficient. The four attributes maps are overlayed using a GIS and for each zone vulnerability degree is calculated; the resulting map is the vulnerability map. This method was tested in Switzerland on several sites .whose some results are here introduced.

Groundwater vulnerability assessment of the SW Trans-Danubian Central Range, Hungary, 1998, Dlsz:'nyi J, F_ L,

Mapping groundwater vulnerability: the Irish perspective, 1998, Daly D, Warren Wp,
The groundwater protection scheme used in the Republic of Ireland since the 1980s had not encompassed the vulnerability mapping concept. Yet internationally, vulnerability maps were becoming an essential part of groundwater protection schemes and a valuable tool in environmental management. Consequently, following a review of protection schemes world-wide, the scheme used in Ireland was updated and amended to include vulnerability maps as a crucial component of the scheme. The approach taken to vulnerability assessments and mapping in the Republic of Ireland has been dictated by the following fundamental questions: Vulnerability of what? Vulnerability to what? Which factors determine the degree of vulnerability? What is the appropriate scale for map production? How can limitations and uncertainties be taken into account? How can vulnerability assessments be integrated into environmental and resource management? The following decisions were made: (i) we should map the vulnerability of groundwater, not aquifers or wells/springs; (ii) the position in the groundwater system specified to be of interest is the water-table (i.e. first groundwater encountered) in either sand/gravel aquifers or in bedrock; (iii) we should map the vulnerability of groundwater to contaminants generated by human activities (natural impacts are a separate issue); (iv) as the main threat to groundwater in Ireland is posed by point sources, we should map the vulnerability of groundwater to contaminants released at 1-2 m below the ground surface; (v) the characteristics of individual contaminants should not be taken into account; (vi) the natural geological and hydrogeological factors that determine vulnerability are the sub-soils above the watertable, the recharge type (whether point or diffuse) and, in sand/gravels, the thickness of the unsaturated zone; (vii) based on these factors, four vulnerability categories are used (extreme, high, moderate and low); (viii) map scales of 1:50 000 and 1:10 000 are preferred; (ix) limitations and uncertainties are indicated by appropriate wording on the maps and a disclaimer; (x) vulnerability maps should be incorporated into groundwater protection schemes, which should be used in decision-making on the location and control of potentially polluting developments. Vulnerability maps have now been produced for a number of local authority areas. They are an important part of county groundwater protection schemes as they provide a measure of the likelihood of contamination, assist in ensuring that protection schemes are not unnecessarily restrictive of human economic activity, help in the choice of engineering preventative measures, and enable major developments, which have a significant potential to contaminate, to be located in areas of relatively low vulnerability and therefore of relatively low risk, from a groundwater perspective

Recharge: the key to groundwater pollution and aquifer vulnerability, 1998, Robins N. S. ,
Recharge is pivotal to understanding the processes by which groundwater pollution can occur. It is implicit in the classification of aquifer units according to their vulnerability to pollution. The management of both groundwater resources and of individual groundwater sources cannot sensibly be undertaken without some knowledge of recharge: its quantity, its seasonality and, above all, the different routes through the sub-soil and the unsaturated zone by which it can occur. However, current estimates of recharge, other than on a research site basis, may be poor, both in the UK and overseas. This volume provides a review of current research into these issues; this introductory paper attempts to highlight the thread throughout all of this work which collectively provides the basic information in support of the current and future management of groundwater resources and sources

Groundwater lowering in karstic aquifers due to agricultural activity in the Fucino plain (Abruzzi, Central Italy) , 1998, Burri Ezio, Petitta Marco

The alluvial-lacustrine sediments that fill the Fucino Plain (>200 km2) contain an important aquifer, mostly fed by the karstic water. The Plain displays high vulnerability by agricultural activity (potential pollution, depletion of groundwater resources). In order to find water, more than 200 wells have been drilled since the 1950s, with a seasonal delivery of about 2,000,000 m3. The possible consequences can be summarised: 1. Decreased efficiency of the operating wells because of the lowering of the piezometric levels. This kind of problem is already evident and it may determine economic losses and environmental degradation, especially if the summer water shortage causes precarious hygienic conditions in the canal network of the Plain. 2. Reduced discharge in springs. This phenomenon involves the decrease of both available drinking water supplies and regular downflow in the canals. 3. Increased vulnerability of the surrounding carbonate aquifers by the infiltration of poor-quality irrigation waters in the karst aquifers.


Environmental vulnerability and agriculture in the karstic domain: landscape indicators and cases in the Atlas Highlands, Morocco, 1999, Akdim Brahim, Amyay Mohammed
After the brief presentation of the major karstic areas in Morocco, the article focused essentially on the Atlas mountains to investigate the impact of the agriculture on the natural systems equilibrium. Socio-economic changes (demographic pressure, escalation of the landscape use, utilisation of new techniques in water harvesting, etc...) have sometimes fathered mechanisms of degradation. Many indicators seem to reflect these mechanisms. The pedologic indicators, soil erosion, the hydrologic and geomorphic indicators, are apprehended to demonstrate existent correlation between different variables and the often negative impacts of land over-use in the karstic domain of the Middle Atlas.

Results 1 to 15 of 126
You probably didn't submit anything to search for