Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That photosynthesis is the process by which green plants convert carbon dioxide and water into simple sugar. chlorophyll and sunlight are essential to the series of complex chemical reactions involved in the process [23].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for western carpathians (Keyword) returned 23 results for the whole karstbase:
Showing 1 to 15 of 23
Environmental and climatic controlled fractionation of elements in the Mesozoic carbonate sequences of the western Carpathians, 1973, Veizer Jan, Demovic Rudolf,
CaO, MgO, insoluble residue, strontium, barium, manganese and titanium distribution and controls

Paleoalpine karstification - The longest paleokarst period in the Western Carpathians (Slovakia), 1995, Cincura J, Kohler E,
The considerable areal extent and great thicknesses of Middle/Upper Triassic carbonate complexes influenced favourably the formation of karst during subaerial periods. The lower boundary of the Paleoalpine karst period is age-determined by the gradual emergence of the basement - during the Upper Cretaceous in the Central Western Carpathians and even earlier in the Inner Carpathians. The upper boundary can be dated by marine transgression The start of the transgression is not synchronous and it varies in a broad range from Upper Cretaceous to Upper Eocene and maybe even up to Oligocene/Miocene. The typical products of the period include typical karst bauxites filling karst cavities, ferri crusts, red clays, collapse and crackle breccias with speleothems, freshwater limestones or polymict conglomerates

Main features of the pre-Gosau paleokarst in the Brezovske Karpaty Mts. (Western Carpathians, Slovakia), 1998, Cincura J,
The considerable areal extent and great thickness of Middle/Upper Triassic carbonate sequences favourably influenced the development of paleokarst during the Paleoalpine karst period in the Brezovske Karpaty Mts. Carbonate formations provide data concerning the first-pre-Gosau-phase of the Paleoalpine karst period. Freshwater limestones, bauxites, reddish ferrugineous silty clays, Valchov Conglomerate, shallow doline-like depressions and deeper canyon-like forms represent the most important pre-Gosau karst sediments and forms

Genetic types of caves in Slovakia, 1998, Bella, Pavel

Karst and non-karst regions in the territory of Slovakia are notable for a very broad typological range of caves. The criteria of cave genetic classification in the existing works concerning parts of the Western Carpathians are not integrated. We suggest fundamental principles of classification and charaterize the basic genetic types of caves in this paper. We also advert to several problems of karstological and speleological terminology (exokras and endokarst, karst and pseudokarst).


Ochtina Aragonite Cave (Western Carpathians, Slovakia): Morphology, Mineralogy of the Fill and Genesis., 2002, Bosak P. , Bella P. , Cilek V. , Ford D. C. , Hrecman H. , Kadlec J. , Osborne A. , Pruner P.

Ochtina Aragonite Cave (Western Carpathians, Slovakia): Morphology, mineralogy of the fill and genesis, 2002, Bosak P, Bella P, Cilek V, Ford Dc, Hercman H, Kadlec J, Osborne A, Pruner P,
Ochtina Aragonite Cave is a 300 m long cryptokarstic cavity with simple linear sections linked to a geometrically irregular spongework labyrinth. The metalimestones, partly metasomatically altered to ankerite and siderite, occur as isolated lenses in insoluble rocks. Oxygen-enriched meteoric water seeping along the faults caused siderite/ankerite weathering and transformation to ochres that were later removed by mechanical erosion. Corrosion was enhanced by sulphide weathering of gangue minerals and by carbon dioxide released from decomposition of siderite/ankerite. The initial phreatic speleogens, older than 780 ka, were created by dissolution in density-derived convectional cellular circulation conditions of very slow flow. Thermohaline convection cells operating in the flooded cave might also have influenced its morphology. Later vadose corrosional events have altered the original form to a large extent. Water levels have fluctuated many times during its history as the cave filled during wet periods and then slowly drained. Mn-rich loams with Ni-bearing asbolane and bimessite were formed by microbial precipitation in the ponds remaining after the floods. Allophane was produced in the acidic environment of sulphide weathering. La-Nd-phosphate and REE enriched Mn-oxide precipitated on geochemical barriers in the asbolane layers. Ochres containing about 50 wt.% of water influence the cave microclimate and the precipitation of secondary aragonite. An oldest aragonite generation is preserved as corroded relics in ceiling niches truncated by corrosional bevels. Thermal ionisation mass spectrometry and alpha counting U series dating has yielded ages of about 500-450 and 138-121 ka, indicating that there have been several episodes of deposition, occurring during Quaternary warm periods (Elsterian 1/2, Eemian). Spiral and acicular forms representing a second generation began to be deposited in Late Glacial (14 ka - Allerod) times. The youngest aragonite, frostwork, continues to be deposited today. Both of the, younger generations have similar isotopic compositions, indicating that they originated in conditions very similar, or identical, to those found at present in the cave

Morphology of Czarna Cave and its significance for geomorphic evolution of the Kościeliska Valley (Western Tatra Mts.), 2002, Gradziń, Ski Michał, , Kiciń, Ska Ditta

Czarna Cave represents phreatic cave with multiple loops. No cave level developed at the water table was detected. The cave was later modified by invasion vadose waters and breakdown processes. The phreatic paleoflow directions were analysed from the asymmetry of scallops. The paleoflow was directed from the east to the west, that is in a direction of Kościeliska Valley. Therefore, this valley represented the main discharge zone of the region during the formation of Czarna Cave.


Fluid inclusion and stable isotopic evidence for early hydrothermal karstification in vadose caves of the Nizke Tatry Mountains (Western Carpathians), 2004, Orvosova M. , Hurai V. , Simon K. , Wiegerova V. ,
Hydrothermal paleokarst cavities with calcite crystals up to 20 cm in diameter were found in two caves of the Nizke Tarry Mountains developed in Triassic limestone and dolomite of the Guttenstein type. In both caves, older zones of tectonic and hydrothermal activity have been overprinted by vadose speleogenesis. According to fluid inclusion microthermometry data, prismatic-scalenoliedral calcite from the Silvo ova Diera Cave has precipitated at temperatures between similar to60 and 101degreesC from low salinity aqueous solutions (less than or equal to0.7 wt. % NaCl eq.). Carbon and oxygen isotope profiling revealed significant delta(13)C decrease accompanied by slight delta(18)O increase during growth of calcite crystals. The negatively correlated carbon and oxygen isotope data cannot be interpreted in terms of any geologically reasonable models based on equilibrium isotopic fractionation. Fluid inclusion water exhibits minor decrease of deltaD values from crystal core (-31 %o SMOW) to rim (-41 %(0) SMOW). Scalenohedral calcite from the NovA Stanisovska Cave has precipitated at slightly higher temperatures 63-107degreesC from aqueous solutions with salinity : less than or equal to2.7 % NaCl eq. The positively correlated trend of delta(13)C and delta(18)O values is similar to common hydrothermal carbonates. The fluid inclusion water deltaD values differ significantly between the crystal core (-50 %(0) SMOW) and rim (- 11 %o SMOW). The calcite crystals are interpreted as representing a product of an extinct hydrothermal system, which was gradually replaced by shallow circulation of meteoric water. Fossil hydrothermal fluids discharged along Alpine uplift-related NNW-SSE-trending faults in Paleogene-pre-Pliocene times. Increased deuterium concentration in the inclusion water compared to recent meteoric precipitation indicates a warmer climate during the calcite crystallization

Mesozoic plate tectonic reconstruction of the Carpathian region, 2004, Csontos L, Voros A,
Palaeomagnetic, palaeobiogeographic and structural comparisons of different parts of the Alpine-Carpathian region suggest that four terranes comprise this area: the Alcapa, Tisza, Dacia and Adria terranes. These terranes are composed of different Mesozoic continental and oceanic fragments that were each assembled during a complex Late Jurassic-Cretaceous-Palaeogene history. Palaeomagnetic and tectonic data suggest that the Carpathians are built up by two major oroclinal bends. The Alcapa bend has the Meliata oceanic unit, correlated with the Dinaric Vardar ophiolite, in its core. It is composed of the Western Carpathians, Eastern Alps and Southern Alcapa units (Transdanubian Range, Bukk). This terrane finds its continuation in the High Karst margin of the Dinarides. Further elements of the Alcapa terrane are thought to be derived from collided microcontinents: Czorsztyn in the N and a carbonate unit (Tisza?) in the SE. The Tisza-Dacia bend has the Vardar oceanic unit in its core. It is composed of the Bihor and Getic microcontinents. This terrane finds its continuation in the Serbo-Macedonian Massif of the Balkans.The Bihor-Getic microcontinent originally laid east of the Western Carpathians and filled the present Carpathian embayment in the Late Palaeozoic-Early Mesozoic. The Vardar ocean occupied an intermediate position between the Western Carpathian-Austroalpine-Transdanubian-High Karst margin and the Bihor-Getic-Serbo-Macedonian microcontinent. The Vardar and Pindos oceans were opened in the heart of the Mediterranean-Adriatic microcontinent in the Late Permian-Middle Triassic. Vardar subducted by the end of Jurassic, causing the Bihor-Getic-Serbo-Macedonian microcontinent to collide with the internal Dinaric-Western Carpathian margin.An external Penninic-Vahic ocean tract began opening in the Early Jurassic, separating the Austroalpine-Western Carpathian microcontinent (and its fauna) from the European shelf. Further east, the Severin-Ceahlau-Magura also began opening in the Early Jurassic, but final separation of the Bihor-Getic ribbon (and its fauna) from the European shelf did not take place until the late Middle Jurassic.The Alcapa and the Tisza-Dacia were bending during the Albian-Maastrichtian. The two oroclinal bends were finally opposed and pushed into the gates of the Carpathian embayment during the Palaeogene and Neogene. At that time, the main N-S shortening in distant Alpine and Hellenic sectors was linked by a broader right-lateral shear zone along the former Vardar suture

Historical biogeography of subterranean beetles Platos cave or scientific evidence?, 2007, Moldovan O. T. , Rajka G.

The last two decades were particularly prolific in historical biogeography because of new information introduced from other sciences, such as paleogeography, by the development of quantitative methods and by molecular phylogeny. Subterranean beetles represent an excellent object of study for historical biogeography because they are the group with the best representation in the subterranean domain. In addition, species have reduced mobility, display different degrees of adaptations to life in caves and many specialists work on this group. Three processes have shaped the present distribution of the tribe Leptodirini (Coleoptera Cholevinae) in the world: dispersal, vicariance, and extinction. Therefore, three successive stages can be established in the space-time evolution of Leptodirini: (1) dispersal from a center of origin in the present area(s); (2) dispersal, extinction and vicariance among the present area(s); and (3) colonization and speciation in the subterranean domain. The Romanian Leptodirini, especially those from Western Carpathians is examined with respect to these processes. Their pattern of distribution in different massifs and at different altitudes is discussed, with possible explanations from a historical biogeographic point of view.


CONTRIBUTION OF SIMPLE HYDROGEOLOGICAL INDICATING METHODS IN CONTAMINATION-IMPACTED ENVIRONMENTS, 2007, Mikita S. , Vybiral V.

Under the project of Ministry of the environment of Slovak Re­public a “real” impact of various contaminant sources on water was monitored and assessed during the period of 4 years. Vari­ous geological environments of The Western Carpathians were chosen as studying areas. The results of the project confirm that the influence of the contamination source is variable in space and time. An amount of objective and efficient information is necessary to fulfill the requirements for the water treatment. The possibility how to minimize the amount of expensive and intricate methods used by investigation was to connect them with hydrogeological indicating methods (HIM). The correlat­ed relations distinguished between contaminant and physical characteristics of water allow using the obtained local informa­tion in larger area and repeating them in higher frequency. The economical benefit is relative to increasing demands on space and time. The base was built on the water conductivity and wa­ter temperature measurements set in field. The measured values which were processed basically allow obtaining indirect infor­mation about the contamination spreading. By correlation the values with water analyses for a monitoring site from specific studied locality and by added other information from field methods the results can be amplified. It is possible to substitute the intricate and expensive contaminant spreading mapping methods by HIM and monitor the dynamic changes of contam­ination influences in space and time with denser data net.


Cryogenic cave carbonates from the Cold Wind Cave, Nzke Tatry Mountains, Slovakia: Extending the age range of cryogenic cave carbonate formation to the Saalian, 2009, k K. , Hercman H. , Orvoov M. , Ja?kov I.
Cold Wind Cave, located at elevations ranging between 1,600 and 1,700 m a. s. l. in the main range of the Nzke Tatry Mountains (Slovakia), is linked in origin with the adjacent Dead Bats Cave. Together, these caves form a major cave system located within a narrow tectonic slice of Triassic sediments. Both caves have undergone complex multiphase development. A system of sub-horizontal cave levels characterized by large, tunnel-like corridors was formed during the Tertiary, when elevation differences surrounding the cave were less pronounced than today. The central part of the Nzke Tatry Mountains, together with the cave systems, was uplifted during the Neogene and Lower Pleistocene, which changed the drainage pattern of the area completely. The formation of numerous steep-sloped vadose channels and widespread cave roof frost shattering characterized cave development throughout the Quaternary. In the Cold Wind Cave, extensive accumulations of loose, morphologically variable crystal aggregates of secondary cave carbonate ranging in size between less than 1 mm to about 35 mm was found on the surface of fallen limestone blocks. Based on the C and O stable isotope compositions of the carbonate (?13C: 0.72 to 6.34 , ?18O: 22.61 to 13.68 V-PDB) and the negative relation between ?13C and ?18O, the carbonate crystal aggregates are interpreted as being cryogenic cave carbonate (CCC). Published models suggest the formation of CCC in slowly freezing water pools, probably on the surface of cave ice, most probably during transitions from stadials to interstadials. Though the formation of these carbonates is likely one of the youngest events in the sequence of formation of cave sediments of the studied caves, the 230Th/234U ages of three samples (79.72.3, 104.02.9, and 180.06.3 ka) are the oldest so far obtained for CCC in Central Europe. This is the first description of CCC formation in one cave during two glacial periods (Saalian and Weichselian).

Cryogenic cave carbonates from the Cold Wind Cave, Nzke Tatry Mountains, Slovakia: Extending the age range of cryogenic cave carbonate formation to the Saalian, 2009, k K. , Hercman H. , Orvoov M. , Jač, Kov I.

Cold Wind Cave, located at elevations ranging between 1,600 and 1,700 m a. s. l. in the main range of the NÃzke Tatry Mountains (Slovakia), is linked in origin with the adjacent Dead Bats Cave. Together, these caves form a major cave system located within a narrow tectonic slice of Triassic sediments. Both caves have undergone complex multiphase development. A system of sub-horizontal cave levels characterized by large, tunnel-like corridors was formed during the Tertiary, when elevation differences surrounding the cave were less pronounced than today. The central part of the NÃzke Tatry Mountains, together with the cave systems, was uplifted during the Neogene and Lower Pleistocene, which changed the drainage pattern of the area completely. The formation of numerous steep-sloped vadose channels and widespread cave roof frost shattering characterized cave development throughout the Quaternary. In the Cold Wind Cave, extensive accumulations of loose, morphologically variable crystal aggregates of secondary cave carbonate ranging in size between less than 1 mm to about 35 mm was found on the surface of fallen limestone blocks. Based on the C and O stable isotope compositions of the carbonate (δ13C: 0.72 to 6.34 ‰, δ18O: –22.61 to –13.68 ‰ V-PDB) and the negative relation between δ13C and δ18O, the carbonate crystal aggregates are interpreted as being cryogenic cave carbonate (CCC). Published models suggest the formation of CCC in slowly freezing water pools, probably on the surface of cave ice, most probably during transitions from stadials to interstadials. Though the formation of these carbonates is likely one of the youngest events in the sequence of formation of cave sediments of the studied caves, the 230Th/234U ages of three samples (79.7±2.3, 104.0±2.9, and 180.0±6.3 ka) are the oldest so far obtained for CCC in Central Europe. This is the first description of CCC formation in one cave during two glacial periods (Saalian and Weichselian).


THE FIRST DATING OF CAVE ICE FROM THE TATRA MOUNTAINS, POLAND AND ITS IMPLICATION TO PALAEOCLIMATE RECONSTRUCTIONS, 2010, Hercman H. , Gą, Siorowski M. , Gradziń, Ski M. Kiciń, Ska D.

Lodowa Cave in Ciemniak, which belongs to the dynamic ice cave type, contains the biggest perennial block of cave-ice in the Tatra Mountains. The ice represents congelation type, since it originates from freezing of water which infiltrates the cave. Two generations of ice have been recognized in this cave. They are divided by the distinct unconformity. The ice building both generations is layered. Two moths which were found in the younger generations were sampled and dated by 14C method yielding 195 ± 30 and 125 ± 30 years. Bearing in mind the position in the section and the fact that the cave ice has waned since the 20s of the last century, the age is 1720-1820 AD and 1660-1790 AD respectively. It proves that the ice was formed during the Little Ice Age. Hence, the erosion boundary which underlies this generation records the degradation of ice before the Little Ice Age most probably during the Medieval Warm Period. The ice volume in the cave was substantially smaller before the Little Ice Age than it is today, despite the clear tendency to melting, which has been recognized since 20s of the last century. The older generation of ice is supposed to have its origins in a cold stage between the Atlantic period and the Medieval Warm Period.


KRASOVA JASKYNA PRYA V STIAVNICKYCH VRCHOCH - HYDROTERMALNA SPELEOGENEZA V KARBONATOVOM PODLOZI MIOCENNEHO STRATOVULKANU, 2011, Bella P. , Sucha V. , Gaal E. , Kodera P.

A cave of hydrothermal origin in crystalline limestone has been investigated near Sklene Teplice Spa in the Stiavnicke vrchy Mts. located in Central Slovakia. Metamorphozed Middle Triassic carbonate rocks occur as a horizon in pre-volcanic basement of Middle Miocene volcanic formations. The hydrothermal origin of studied cave is documented by spherical and irregural oval phreatic morphology sculptured by ascending thermal water, metamorphic type of the host rocks and their hydrothermal alteration, occurrence of large calcite and quartz crystals, and hydrothermal clays with three mineral smectite-kaolinite, illite and goethite associations. The primary phases of speleogenesis in the crystalline limestones was caused by hydrothermal processes linked either to the emplacement of granodiorite subvolcanic intrusions during the Late Badenian time or to epithermal system of the Late Sarmatian time in the central zone of the Stiavnica stratovolcano. The described cave presents the remarkable' example of hydrothermal limestone cave associated with Miocene volcanism and magmatic intrusions in Central Slovakia.
 


Results 1 to 15 of 23
You probably didn't submit anything to search for