MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_left.php on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That fathometer is a water depth measuring device [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for capacity (Keyword) returned 106 results for the whole karstbase:
Showing 16 to 30 of 106
Geomorphology of the Tertiary gypsum formations in the Ebro Depression (Spain), 1998,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Elorza Mg, Santolalla Fg,
This paper reviews the current knowledge of the mainly karstic geomorphological features developed in the evaporitic formations of the Ebro Depression (northern Spain). Special emphasis is given to the recently published and unpublished scientific advances. The gypsum formations, of Tertiary age, have an extensive outcrop area within the Ebro Depression. Here, their morphogenesis is controlled mainly by processes of surface and subsurface dissolution acting on the gypsum. Outstanding landforms in the gypsum terrain include saline lakes developed in flat bottom dolines (saladas). Other characteristic morphologies include karren and gypsum domes, which occur on a decimetre scale. Where the gypsum is covered by Quaternary alluvial deposits the karstification processes are especially intense and cause subsidence phenomena. Karstic subsidence affects stream terraces, mantled pediments and infilled valleys, which in the region are called vales. Dissolution-induced synsedimentary subsidence has produced interesting geological features, which include significant thickening and deformation of the alluvial deposits. In contrast to the rapid removal of gypsum by dissolution, the amount of gypsum removed by erosion is low. Water erosion studies carried out on gypsiferous slopes of the Ebro Depression, indicate that the sediment yield ranges from 0.59 to 7.82 t/ha/year. This low yield results from the high infiltration capacity of the soils. Subsidence caused by gypsum dissolution has important socioeconomic consequences in the Ebro Depression. The active alluvial karstification of the gypsum causes numerous sinkholes that are harmful to linear structures (roads, railway Lines, irrigation channels), buildings and agricultural land. Unforeseen catastrophic subsidence also puts human Lives at risk. The benefits of such terrains include thickened alluvial deposits which act as valuable water reservoirs and which form excellent sources of aggregates. Fluvial valleys in this gypsiferous terrain commonly show an asymmetrical geometry with prominent gypsum scarps at one side. These gypsum scarps are affected by numerous landslides. These slope movements are hazardous, may dam rivers and cause flooding of the alluvial plains. (C) 1998 Elsevier Science B.V. All rights reserved

Contribution of correlation and spectral analyses to the regional study of a large karst aquifer (Charente, France), 1998,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Larocque M. , Mangin A. , Razack M. , Banton O. ,
The purpose of the study is to demonstrate that correlation and spectral analyses can contribute to the regional study of a large karst aquifer. An example is presented for the La Rochefoucauld karst aquifer (Charente, France). Different types of spatially distributed time series provide valuable spatio-temporal information for the karat aquifer. The available time series consist of the spring flow rates, the flow rates at different locations in sinking streams, the piezometric levels, the electrical conductivity and temperature of the water, the atmospheric pressure and the precipitation The analysis of the flow rates at the springs shows that the aquifer empties very slowly and has a large storage capacity. Hydrodynamic links were established between three of the four rivers flowing on the aquifer and the springs. The results also demonstrate the important spatial heterogeneity of the aquifer and indicate that the most rapid flow occurs in the northern part of the aquifer. Hourly piezometric and electrical conductivity time series indicate that the transmissivity of the aquifer varies when some conductive channels become desaturated during the low water period. The delays between the distributed recharge and the piezometric level, between the localized river input and the how rates at the springs and between the electrical conductivities in rivers and the main spring provide information on the travel times in the aquifer, The observation of earth tides and barometric effects indicate that this apparently unconfined aquifer has a confined behaviour. (C) 1998 Elsevier Science B.V. All rights reserved

Structure et comportement hydraulique des aquifers karstiques, DSc. Thesis, faculte des Sciences de l'Universite de Neuchatel., 1998,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Jeannin Py.
This thesis aims to provide a better knowledge of karst flow systems, from a functional point of view (behaviour with time), as well as from a structural one (behaviour in space). The first part of the thesis deals with the hydrodynamic behaviour of karst systems, and the second part with the geometry of karstic networks, which is a strong conditioning factor for the hydrodynamic behaviour. Many models have been developed in the past for describing the hydrodynamic behaviour of karst hydrogeological systems. They usually aim to provide a tool to extrapolate, in time and/or space, some characteristics of the flow fields, which can only be measured at a few points. Such models often provide a new understanding of the systems, beyond what can be observed directly in the field. Only special field measurements can verify such hypotheses based on numerical models. This is an significant part of this work. For this purpose, two experimental sites have been equipped and measured: Bure site or Milandrine, Ajoie, Switzerland, and Holloch site, Muotathal, Schwyz, Switzerland. These sites gave us this opportunity of simultaneously observe hydrodynamic parameters within the conduit network and, in drillholes, the "low permeability volumes" (LPV) surrounding the conduits. These observations clearly show the existence of a flow circulation across the low permeability volumes. This flow may represent about 50% of the infiltrated water in the Bure test-field. The epikarst appears to play an important role into the allotment of the infiltrated waters: Part of the infiltrated water is stored at the bottom of the epikarst and slowly flows through the low permeability volumes (LPV) contributing to base flow. When infiltration is significant enough the other part of the water exceeds the storage capacity and flows quickly into the conduit network (quick flow). For the phreatic zone, observations and models show that the following scheme is adequate to describe the flow behaviour: a network of high permeability conduits, of tow volume, leading to the spring, is surrounded by a large volume of low permeability fissured rock (LPV), which is hydraulically connected to the conduits. Due to the strong difference in hydraulic conductivity between conduits and LPV, hydraulic heads and their variations in time and space are strongly heterogeneous. This makes the use of piezometric maps in karst very questionable. Flow in LPV can be considered as similar to flow in fractured rocks (laminar flow within joints and joints intersections). At a catchment scale, they can be effectively considered as an equivalent porous media with a hydraulic conductivity of about 10-6 to 10-7 m/s. Flow in conduits is turbulent and loss of head has to be calculated with appropriate formulas, if wanting any quantitative results. Our observations permitted us to determine the turbulent hydraulic conductivity of some simple karst conduits (k',turbulent flow), which ranges from 0.2 to 11 m/s. Examples also show that the structure of the conduit network plays a significant role on the spatial distribution of hydraulic heads. Particularity hydraulic transmissivity of the aquifer varies with respect to hydrological conditions, because of the presence of overflow conduits located within the epiphreatic zone. This makes the relation between head and discharge not quadratic as would be expected from a (too) simple model (with only one single conduit). The model applied to the downstream part of Holloch is a good illustration of this phenomena. The flow velocity strongly varies along the length of karst conduits, as shown by tracer experiments. Also, changes in the conduit cross-section produce changes in the (tow velocity profile. Such heterogeneous flow-field plays a significant role in the shape of the breakthrough curves of tracer experiments. It is empirically demonstrated that conduit enlargements induce retardation of the breakthrough curve. If there are several enlargements one after the other, an increase of the apparent dispersivity will result, although no diffusion with the rock matrix or immobile water is present. This produces a scale effect (increase of the apparent dispersivity with observation scale). Such observations can easily be simulated by deterministic and/or black box models. The structure of karst conduit networks, especially within the phreatic zone, plays an important role not only on the spatial distribution of the hydraulic heads in the conduits themselves, but in the LPV as well. Study of the network geometry is therefore useful for assessing the shape of the flow systems. We further suggest that any hydrogeological study aiming to assess the major characteristics of a flow system should start with a preliminary estimation of the conduit network geometry. Theories and examples presented show that the geometry of karst conduits mainly depends on boundary conditions and the permeability field at the initial stage of the karst genesis. The most significant boundary conditions are: the geometry of the impervious boundaries, infiltration and exfiltration conditions (spring). The initial permeability field is mainly determined by discontinuities (fractures and bedding planes). Today's knowledge allows us to approximate the geometry of a karst network by studying these parameters (impervious boundaries, infiltration, exfiltration, discontinuity field). Analogs and recently developed numerical models help to qualitatively evaluate the sensitivity of the geometry to these parameters. Within the near future, new numerical tools will be developed and will help more closely to address this difficult problem. This development will only be possible if speleological networks can be sufficiently explored and used to calibrate models. Images provided by speleologists to date are and will for a long time be the only data which can adequately portray the conduit networks in karst systems. This is helpful to hydrogeologists. The reason that we present the example of the Lake Thun karst system is that it illustrates the geometry of such conduits networks. Unfortunately, these networks are three-dimensional and their visualisation on paper (2 dimensions) is very restrictive, when compared to more effective 3-D views we can create with computers. As an alternative to deterministic models of speleogenesis, fractal and/or random walk models could be employed.

Paleokarsts in late Precambrian and Ordovician carbonates, Kalpin-Shaya uplift zone, Tarim basin, China, 1999,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Cao Hs, Yang Jd, Wang Dn,
The reservoir properties in the Kalpin-Shaya uplift zone, Tarim basin, are a common concern with regards to petroleum exploration and reservoir evaluation alike. Dissolution and paleokarst have a positive impact on the porosity as well as the storage capacity of carbonate reservoirs because the secondary porosity related to dissolution and paleokarst serves as excellent traps for migrating hydrocarbons. In order to evaluate the reservoir characteristics reasonably in the late Precambrian and Ordovician carbonate rocks, the secondary porosity, which was produced by dissolution and paleokarstification in late diagenetic stage. should be studied because the primary pores were mostly destroyed during the early-middle diagenesis due to serious compaction and multi-cementation. Carbonate rocks ate among the most important collectors of oil and gas accumulations in the world Important oil and gas reservoirs in paleokarst-containing carbonate rocks are known worldwide because micropores and megapores, such as solution openings, solution fissures, funnels, sinkholes. and caves, serve as the fundamentally important secondary porosity in those rocks. Several wells revealed that the Kalpin-Shaya region is a prospective target for oil and gas exploration. The reservoir carbonates of the Kalpin-Shaya uplift zone in the northern Tarim include dolomites and limestones. The best dolomite reservoirs are in the late Precambrian Qigebulake Formation (Z(2)(2)), the lower Qiulitage Group (is an element of(2-3)), the upper Qiulitage Group (O-1(1)), smd the Xiaoerbulake Formation (is an element of(1)), whereas limestone reservoirs are in the middle-upper formations of the upper Qiulitage Group (O-1(2-3)). On the basis of the study of petrology, paleontology, and stratigraphy from field work and well core data, the pore spaces within the Precambrian and Ordovician carbonate reservoirs are studied with the aim of proving that all secondary pores are controlled by dissolution and paleokarst

La conservation des grottes ornees: un probleme de stabilite d'un systeme naturel (l'exemple de la grotte prehistorique de Gargas, Pyrenees francaises), 1999,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Mangin Alain, Bourges Francois, D'hulst Dominique,
Painted caves are karstic cavities here considered as stable physical systems in a state of dynamic equilibrium. From the example of the Gargas cave, we show that introduction of excess energy (visitors, lighting) causes a loss of stability and introduces a risk of degradation in the cavity. From different approaches, we identify the periods and the causes of instability and we determine the maximum level of introduced energy which would preserve the conservative properties of the cavity. These results allow cave equipment and visitor capacity compatible with satisfactory conservation conditions to be defined.ResumeLes grottes ornees sont des cavites karstiques considerees comme des systemes physiques stables en etat d'equilibre dynamique. Nous montrons, a partir de l'exemple de la grotte de Gargas, que l'introduction d'une energie excedentaire (visiteurs, eclairage) destabilise le systeme naturel, determinant ainsi un risque de degradation dans la cavite. Differentes approches permettent d'identifier les periodes et les causes de la destabilisation et de determiner le niveau maximum d'energie introduite permettant le maintien du pouvoir conservatoire de la cavite. Ces resultats permettent de definir des amenagements et un niveau de frequentation compatible avec des conditions de conservation satisfaisantes

Comparison of stormwater management in a karst terrane in Springfield, Missouri - case histories, 1999,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Barner Wl,
Control of stormwater in sinkhole areas of Springfield, MO has involved the utilization of several standard approaches: concrete-lined channels draining into sinkholes; installation of drainage pipes into the sinkhole 'eyes' (swallow holes); filling of sinkholes; elaborate drains or pumps to remove stormwater from one sinkhole and discharging into another drainage basin or sinkhole; and enlargement of swallow holes by excavation to increase drainage capacity. Past planning considerations and standard engineering approaches have resulted in flooding of sinkholes and drainage areas, including residential, industrial and commercial developments. Having recognized the inadequacy of existing designs to control flooding and the need to accommodate increased runoff from future development, the City of Springfield adopted an ordinance (effective 19 June 1989 and modified in 1990 and 1993) in response to public pressure and concerns over flooding in sinkholes and sinkhole drainage areas. Three sites were analyzed to examine the effectiveness of contrasting design approaches to stormwater management. These sites differ in vegetation, on-site/off-site considerations, and types of development proposed. All three sites are located within the East Cherry Street Sinkhole Area. The first site, a wooded tract with unmodified sinkholes was cleared and developed for residential use. Discharge of stormwater was directed into sinkholes, and erosion control consisted of hydro-mulching and sedimentation fences in sinkhole areas. East of this location are two parcels which differ in removal of vegetation and off-site drainage relationships. Stormwater design in these sites was adapted for modifications made to sinkholes during railroad and highway construction several decades earlier. Sediment fencing, hydro-mulching and detention berms augment infiltration, restrict erosion, retard discharge to sinkholes, and incorporate off-site considerations. Ongoing observations of stormwater behavior indicate problems of flooding and sediment control at the western site but minimal disruptions of existing drainage patterns at the eastern sites. Design calculation for the western site show adequate volume retention in sinkholes, but different design approaches were implemented to 'soften' the impact of stormwater discharging into these sinkholes, allowing for minimal disruptions in the natural drainage network. The lack of recognition of sinkholes as integral parts of dynamic hydrologic systems may result in problems with on-site/off-site drainage. Standard engineering designs for stormwater detention are not appropriate for the hydraulic characteristics of the shallow karst drainage network. While runoff estimations are conservative, the design calculations fall short of adequately addressing actual stormwater runoff characteristics. (C) 1999 Elsevier Science B.V. All rights reserved

Review of groundwater pollution and protection in karst areas, 1999,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Kacaroglu F. ,
Karst groundwater (the water in a karst aquifer) is a major water resource in many regions of some countries. Water requirements for most of the settlements in the karstic regions are supplied from karst aquifers. Karst environments are also used for the disposal of liquid and solid domestic agricultural, and industrial wastes, which result in karst groundwater pollution. Karst aquifers have specific hydraulic and hydrogeologic characteristics that render them highly vulnerable to pollution from human activities. Karst groundwater becomes polluted more easily and in shorter time periods than water in non-karstic aquifers. Thus, protection measures are required to preserve the quality and quantity of karst groundwater that specifically consider the vulnerability of the karst environment. In order to preserve karst groundwater, the geological, hydrological and hydrogeological characteristics of the karst area must be investigated and information on polluting activities and sources must be collected. Then, a comprehensive protection and control system must be developed consisting of the following six components: (1) develop and implement a groundwater monitoring system, (2) establish critical protection zones, (3) develop proper land use strategies, (4) determine the reasonable development capacity of the karst aquifer, (5) control and eliminate when necessary sources of pollution, (6) increase public awareness of the value and vulnerability of karst aquifers

Conduit hydrogeology of a tropical coastal carbonate aquifer. MSc thesis, 1999,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Beddows, P. A

The aim of this study is to investigate the hydrogeology of the submerged conduit systems of a coastal carbonate aquifer (Caribbean coast, Yucatan Peninsula, Mexico), and thereby better understand their significance as large permeability heterogeneities. A complex spatial trend in conduit flow rates (determined by quantitative fluorescent dye tracing initiated 6 km inland) was found, including significant velocity variation between consecutive conduit segments. Elevated coastal velocities under low tide conditions are shown by salinity profiling, to be induced by the volumetric increase of discharging water from mixing with marine water. Semi-diurnal micro-tidal loading is sufficient to induce flooding from the sea into the conduits at one coastal discharge point, and significantly reduce flow rates at another. Furthermore, a network of four observation sites extending 5 km inland indicates efficient propagation of the ~0.30 m tidal signal through the Nohoch Nah Chich conduit system, a distance several time greater than previously appreciated in this environment. The field results clearly indicate that the hydrogeological flux is dominated by cavernous porosity, and that the aquifer is dynamically responsive to the high-frequency low-magnitude tidal loading to a significant distance inland. Conventional coastal groundwater models such as the Ghyben-Herzberg lens model, assume isotropic homogeneous equivalent-porous-medium conditions. Because the corollaries of the conventional models are inconsistent with the field evidence, they are inapplicable in this environment. It is hoped that these results will aid future modelling efforts, and improve our capacity to manage the valuable groundwater resources which represents the unique source of potable water to the local population.


Sources et hydrosystmes karstiques des rgions arides et semi-arides, essai gographique, 2000,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Nicod, Jean
SPRINGS AND KARSTIC HYDROSYSTEMS IN THE ARID AND SEMI-ARID AREAS. A GEOGRAPHICAL ESSAY - The patterns of the main springs and hydrosystems in the deserts and surroundings are sorted, according to their geomorphological situation (piedmont, coastal or inner plateau), to structure of the aquifers and working of groundwater (storage capacity, artesian systems) and to the hydrochemical criteria particularly the solute load in Mg2+, SO42- and Cl-. From the best known examples, the main problems on the genesis and working of the karstic hydro-systems in arid environment are discussed: - the incidence of tectonic stress and paleokarstic and paleoclimatic inheritances; - the recent periods of recharge (in Northern Sahara and Near and Middle East); - the interactions in ionic solutions and hyper-karstic processes: particular_ly with the strong acid, H2SO4, the "double solvency effect", and the mixing water corrosion near the salt water wedge in the coastal karsts.

Groundwater resources and vulnerability in the Cretaceous Chalk of Northern Ireland, 2000,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Barnes S,
A confined Cretaceous Chalk aquifer underlies approximately one quarter of Northern Ireland, yet little is known about its groundwater resource potential. This issue has been addressed on the catchment scale by analysing spring discharge and hydrochemical fluctuations. The Chalk springs are recharged by allogenic leakage and surface runoff from overlying Tertiary basalts. Sources connected to river-sinks show greater variation in flow and quality reflecting a much shorter residence time than those predominantly derived from the diffuse recharge. Discharge from the confined region becomes proportionally significant during prolonged dry spells, but is typically a minor component compared with groundwater circulation volumes in the unconfined region. Spring flood recessions are rapid (recession coefficients up to 0.125 per day) and suggest that the Chalk has a high hydraulic conductivity and a low storage capacity. These characteristics together, with the essentially impermeable matrix, are consistent with an aquifer dominated by a dispersed fracture network. Conceptual aquifer classification suggests that the outcrop region is a highly sensitive karst aquifer. The subcrop areas can only be exploited via boreholes and are likely to be less productive, although the water quality has been shown to be more stable and less vulnerable to contamination

Transient-state history matching of a karst aquifer ground water flow model, 2000,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Larocque M. , Banton O. , Razack M. ,
Ground water flow modeling in a karst aquifer presents many difficulties. In particular, the hydrodynamic properties and the now behavior can vary over time. History matching of transient-state conditions is required to test the accuracy of the model under varying hydrodynamic conditions. The objective of this study was to illustrate how transient-state conditions can be used to history match a ground water flow model of a large aquifer, the La Rochefoucauld karst (Charente, France). The model used a porous medium equivalent and was based on a steady-state calibration of hydraulic conductivities. The history match consisted of studying the simulated heads and spring flow rates to test the capacity of the model to reproduce different aspects of the aquifer behavior, The simulated heads and flow rates were analyzed as new data using correlation and spectral analyses to compare the temporal structures of the measured and simulated time series. The analyses provided information on the storage capacity of the aquifer, the input-output delays, the degree of correlation between input and output, and the length of the impulse response of the aquifer, These data were used to study the impact of the hypotheses underlying the model (hydraulic conductivities, storage coefficient, representation of rivers, use of a porous medium equivalent). The results show that the model adequately simulates the overall behavior of the studied aquifer, The model can be used under variable hydrodynamic conditions to simulate ground water flow on a regional scale. This case study illustrates how a complete history match of a simplified representation of reality can lead to an adequate mathematical tool

Drainage-basin-scale geomorphic analysis to determine reference conditions for ecologic restoration--Kissimmee River, Florida, 2000,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Warne Andrew G. , Toth Louis A. , White William A. ,
Major controls on the retention, distribution, and discharge of surface water in the historic (precanal) Kissimmee drainage basin and river were investigated to determine reference conditions for ecosystem restoration. Precanal Kissimmee drainage-basin hydrology was largely controlled by landforms derived from relict, coastal ridge, lagoon, and shallow-shelf features; widespread carbonate solution depressions; and a poorly developed fluvial drainage network. Prior to channelization for flood control, the Kissimmee River was a very low gradient, moderately meandering river that flowed from Lake Kissimmee to Lake Okeechobee through the lower drainage basin. We infer that during normal wet seasons, river discharge rapidly exceeded Lake Okeechobee outflow capacity, and excess surface water backed up into the low-gradient Kissimmee River. This backwater effect induced bankfull and peak discharge early in the flood cycle and transformed the flood plain into a shallow aquatic system with both lacustrine and riverine characteristics. The large volumes of surface water retained in the lakes and wetlands of the upper basin maintained overbank flow conditions for several months after peak discharge. Analysis indicates that most of the geomorphic work on the channel and flood plain occurred during the frequently recurring extended periods of overbank discharge and that discharge volume may have been significant in determining channel dimensions. Comparison of hydrogeomorphic relationships with other river systems identified links between geomorphology and hydrology of the precanal Kissimmee River. However, drainage-basin and hydraulic geometry models derived solely from general populations of river systems may produce spurious reference conditions for restoration design criteria

Simulation of daily and monthly stream discharge from small watersheds using the SWAT model, 2000,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Spruill C. A. , Workman S. R. , Taraba J. L. ,
The Soil and Water Assessment Tool (SWAT) was evaluated and parameter sensitivities were determined while modeling daily streamflows in a small central Kentucky watershed over a two-year period. Streamflow data from 1996 were used to calibrate the model and streamflow data from 1995 were used for evaluation. The model adequately predicted the trends in daily streamflow during this period although Nash-Sutcliffe R-2 values were -0.04 and 0.19 for 1995 and 1996, respectively The model poorly predicted the timing of some peak flow values and recession rates during the last half of 1995. Excluding daily peak flow values from August to December improved the daily R-2 to 0.15, which was similar to the 1996 daily R2 value. The Nash-Sutcliffe R-2 for monthly total flows were 0.58 for 1995 and 0.89 for 1996 which were similar to values found in the literature. Since very little information was available on the sensitivity of the SWAT model to various inputs, a sensitivity analysis/calibration procedure was designed to evaluate parameters that were thought to influence stream discharge predictions. These parameters included, drainage area, slope length, channel length, saturated hydraulic conductivity, and available water capacity. Minimization of the average absolute deviation between observed and simulated streamflows identified optimum values/ranges for each parameter. Saturated hydraulic conductivity alpha baseflow factor; drainage area, channel length, and channel width were the most sensitive parameters in modeling the karst influenced watershed. The sensitivity analysis process confirmed die trace studies in the karst watershed that a much larger area contributes to streamflow than can be described by the topographic boundaries. Overall, the results indicate that the SWAT model can be an effective tool for describing monthly, runoff from small watersheds in central Kentucky that have developed on karat hydrology however calibration data are necessary to account for solution channels draining into or out of the topographic watershed

Hydrothermal speleogenesis: its settings and peculiar features, 2000,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Dublyansky Y. V.
Three major settings of hydrothermal karst development are: endokarst, deep-seated karst, and shallow karst. Endokarst develops at great depth, where the pressure exceeds the strength of the rock and voids can exist only if they are filled with overpressured fluid, which prevents them from collapse. In the deep-seated setting hydrothermal karst develops in response to changes of pressure and temperature of upwelling fluids. Two large zones: (1) zone of carbonate dissolution and (2) zone of carbonate precipitation form within hydrothermal systems. The shallow setting encompasses the interface between thermal and low-temperature waters or the zone near the upper surface of thermal waters. Four major conditions, which create and enhance solutional capacity in hydrothermal systems are: (1) elevated temperature gradients (for carbonated waters); (2) elevated rate of discharge (for carbonated waters); (3) oxidation of hydrogen sulfide; and (4) mixing waters of contrasting chemistry. These features readily occur in the shallow hydrothermal karst setting; the largest hydrothermal caves are formed there. Morphologies and dimensions of hydrothermal caves range from pores, individual rooms, and single conduit caves to large three-dimensional mazes. Cave deposits hold clues as to their origin in their mineralogy, morphology, chemistry, isotopic properties, and fluid inclusion temperatures.

Speleogenesis under deep-seated and confined settings, 2000,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Klimchouk A. B.
The terms deep-seated, hypogenic and artesian speleogenesis refer to closely related and overlapping (although not entirely equivalent) concepts. Concerning groundwater hydrodynamics, the vast majority of deep-seated and hypogenic karst develops under confined settings, or settings that are unconfined but paragenetic or subsequent to confinement. Certain diagnostic features of confined groundwater circulation and deep-seated environments distinguish these conditions from those formed in unconfined settings. The last few decades have seen a growing recognition of the variety and importance of hypogenic dissolution processes and of speleogenesis under confined settings which commonly precedes unconfined development. Views of artesian speleogenesis are controversial. It was commonly ignored as a site for cave origin because the classic concept of artesian flow implies long lateral travel distances for groundwater within a soluble unit, resulting in a low capacity to generate caves within the confined area. However, the recognition of aspects derived from non-classical views of artesian flow, namely the role of cross-formation hydraulic communication within artesian basins, the concept of transverse speleogenesis, and the inversion of hydrogeologic function of beds in a sequence, allows a revision of the theory of artesian speleogenesis and views on the origin of many cave types. Under artesian speleogenesis, discharge through a cave is always hydraulically controlled, being constrained either by the hydraulic capacity of the passages or by that of the major confining bed or other overlying formations. In contrast to normal phreatic conditions, the discharge and enlargement rate do not increase dramatically after the kinetic breakthrough in the early evolution of conduits. Dissolution rates depend mainly on the mass balance rather than on solution kinetics during the artesian stage. Artesian speleogenesis is immensely important to speleo-inception, but it also accounts for the development of some of the largest known caves in the world and of many smaller caves. Typical conditions of recharge, the flow pattern through the soluble rocks, and groundwater aggressiveness favor uniform, rather than competing, development of conduits, resulting in maze caves where the proper structural prerequisites exist. The most common flow pattern favoring artesian speleogenesis is upward cross-formation flow in areas of topographic/potentiometric lows. The hydrodynamic influence of prominent valleys or depressions may extend more than a thousand meters below the surface. Artesian speleogenesis and flow through soluble beds are commonly transverse, with conduit development occurring across the beds rather than laterally. Cross-formational flow favors a variety of dissolution mechanisms that commonly involve mixing. Hydrogeochemical mechanisms of speleogenesis are particularly diverse and potent where carbonate and sulfate beds alternate and within or adjacent to hydrocarbon-bearing basins.

Results 16 to 30 of 106
You probably didn't submit anything to search for