Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That incoherent material is unconsolidated material [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for ratios (Keyword) returned 116 results for the whole karstbase:
Showing 16 to 30 of 116
The sulfate speleothems of Thampanna cave, Nullarbor Plain, Australia, 1991, James, Julia M.

Examination of gypsum speleothems and chemical analysis of the cave drip waters (ions to chloride mole ratios, tot. dissolved solids, nitrate) confirm that the major source of the sulfate in Thampanna cave (Western Australia) is from seawater transported by rain.

A High-Resolution Record of Holocene Climate Change in Speleothem Calcite from Cold Water Cave, Northeast Iowa, 1992, Dorale Ja, Gonzalez La, Reagan Mk, Pickett Da, Murrell Mt, Baker Rg,
High-precision uranium-thorium mass spectrometric chronology and 18O-13C isotopic analysis of speleothem calcite from Cold Water Cave in northeast Iowa have been used to chart mid-Holocene climate change. Significant shifts in [dagger]18O and [dagger]13C isotopic values coincide with well-documented Holocene vegetation changes. Temperature estimates based on 18O/16O ratios suggest that the climate warmed rapidly by about 3{degrees}C at 5900 years before present and then cooled by 4{degrees}C at 3600 years before present. Initiation of a gradual increase in [dagger]13C at 5900 years before present suggests that turnover of the forest soil biomass was slow and that equilibrium with prairie vegetation was not attained by 3600 years before present

The Ozark region of the U.S. midcontinent is host to a number of Mississippi Valley-type districts, including the world-class Viburnum Trend, Old Lead Belt, and Tri-State districts and the smaller Southeast Missouri barite, Northern Arkansas, and Central Missouri districts. There is increasing evidence that the Ozark Mississippi Valley-type districts formed locally within a large, interconnected hydrothermal system that also produced broad fringing areas of trace mineralization, extensive subtle hydrothermal alteration, broad thermal anomalies, and regional deposition of hydrothermal dolomite cement. The fluid drive was provided by gravity flow accompanying uplift of foreland thrust belts during the Late Pennsylvanian to Early Permian Ouachita orogeny. In this study, we use chemical speciation and reaction path calculations, based on quantitative chemical analyses of fluid inclusions, to constrain likely hydrothermal brine compositions and to determine which precipitation mechanisms are consistent with the hydrothermal mineral assemblages observed regionally and locally within each Mississippi Valley-type district in the Ozark region. Deposition of the regional hydrothermal dolomite cement with trace sulfides likely occurred in response to near-isothermal effervescence of CO2 from basinal brines as they migrated to shallower crustal levels and lower confining pressures. In contrast, our calculations indicate that no one depositional process can reproduce the mineral assemblages and proportions of minerals observed in each Ozark ore district; rather, individual districts require specific depositional mechanisms that reflect the local host-rock composition, structural setting, and hydrology. Both the Northern Arkansas and Tri-State districts are localized by normal faults that likely allowed brines to rise from deeper Cambrian-Ordovician dolostone aquifers into shallower carbonate sequences dominated by limestones. In the Northern Arkansas district, jasperoid preferentially replaced limestones in the mixed dolostone-limestone sedimentary packages. Modeling results indicate that the ore and alteration assemblages in the Tri-State and Northern Arkansas districts resulted from the flow of initially dolomite-saturated brines into cooler limestones. Adjacent to fluid conduits where water/rock ratios were the highest, the limestone was replaced by dolomite. As the fluids moved outward into cooler limestone, jasperoid and sulfide replaced limestone. Isothermal boiling of the ore fluids may have produced open-space filling of hydrothermal dolomite with minor sulfides in breccia and fault zones. Local mixing of the regional brine with locally derived sulfur undoubtedly played a role in the development of sulfide-rich ore runs. Sulfide ores of the Central Missouri district are largely open-space filling of sphalerite plus minor galena in dolostone karst features localized along a broad anticline. Hydrothermal solution collapse during ore deposition was a minor process, indicating dolomite was slightly undersaturated during ore deposition. No silicification and only minor hydrothermal dolomite is present in the ore deposits. The reaction path that best explains the features of the Central Missouri sulfide deposits is the near-isothermal mixing of two dolomite-saturated fluids with different H2S and metal contents. Paleokarst features may have allowed the regional brine to rise stratigraphically and mix with locally derived, H2S-rich fluids

Middle Devonian carbonates (250-430 m thick) of the eastern Great Basin were deposited along a low energy, westward-thickening, distally steepened ramp. Four third-order sequences can be correlated across the ramp-to-basin transition and are composed of meter-scale, upward-shallowing carbonate cycles (or parasequences). Peritidal cycles (shallow subtidal facies capped by tidal-flat laminites) constitute 90% of all measured cycles and are present across the entire ramp. The peritidal cycles are regressive- and transgressive-prone (upward-deepening followed by upward-shallowing facies trends). Approximately 80% of the peritidal cycle caps show evidence of prolonged subaerial exposure including sediment-filled dissolution cavities, horizontal to vertical desiccation cracks, rubble and karst breccias, and pedogenic alteration; locally these features are present down to 2 m below the cycle caps. Subtidal cycles (capped by shallow subtidal facies) are present along the middle-outer ramp and ramp margin and indicate incomplete shallowing. submerged subtidal cycles (64% of all subtidal cycles) are composed of deeper subtidal facies overlain by shallow subtidal facies. Exposed subtidal cycles are composed of deeper subtidal facies overlain by shallow subtidal facies that are capped by features indicative of prolonged subaerial exposure (dissolution cavities and brecciation). Average peritidal and subtidal cycle durations are between approximately 50 and 130 k.y. (fourth- to fifth-order). The combined evidence of abundant exposure-capped peritidal and subtidal cycles, transgressive-prone cycles, and subtidal cycles correlative with updip peritidal cycles indicates that the cycles formed in response to fourth- to fifth-order, glacio-eustatic sea-level oscillations. Sea-level oscillations of relatively low magnitude (< 10 m) are suggested by the abundance of peritidal cycles, the lack of widely varying, water-depth-dependent facies within individual cycles, and the presence of noncyclic stratigraphic intervals within intrashelf-basin, slope, and basin facies. Noncyclic intervals represent missed subtidal beats when the seafloor lay too deep to record the effects of the short-term sea-level oscillations. Exposure surfaces at the tops of peritidal and subtidal cycles represent one, or more likely several, missed sea-level oscillations when the platform lay above fluctuating sea level, but the amplitude of fourth- to fifth-order sea-level oscillation(s) were not high enough to flood the ramp. The large number of missed beats (exposure-capped cycles), specifically in Sequences 2 and 4, results in Fischer plots that show poorly developed rising and falling limbs (subdued wave-like patterns); consequently the Fischer plots: are of limited use as a correlation tool for these particular depositional sequences. The abundance of missed beats also explains why Milankovitch-type cycle ratios (similar to 5:1 or similar to 4:1) are not observed and why such ratios would not be expected along many peritidal-cycle-dominated carbonate platforms

The combined use of Sr-87/Sr-86 and carbon and water isotopes to study the hydrochemical interaction between groundwater and lakewater in mantled karst, 1996, Katz B. G. , Bullen T. D. ,
The hydrochemical interaction between groundwater and lakewater influences the composition of water that percolates downward from the surficial aquifer system through the underlying intermediate confining unit and recharges the Upper Floridan aquifer along highlands in Florida. The Sr-87/Sr-86 ratio along with the stable isotopes, D, O-18, and C-13 were used as tracers to study the interaction between groundwater, lakewater, and aquifer minerals near Lake Barco, a seepage lake in the mantled karst terrane of northern Florida. Upgradient from the lake, the Sr-87/Sr-86 ratio of groundwater decreases with depth (mean values of 0.71004, 0.70890, and 0.70852 for water from the surficial aquifer system, intermediate confining unit, and Upper Floridan aquifer, respectively), resulting from the interaction of dilute oxygenated recharge water with aquifer minerals that are less radiogenic with depth. The concentrations of Sr2 generally increase with depth, and higher concentrations of Sr2 in water from the Upper Floridan aquifer (20-35 mu g/L), relative to water from the surficial aquifer system and the intermediate confining unit, result from the dissolution of Sr-bearing calcite and dolomite in the Eocene limestone. Dissolution of calcite [delta(13)C = -1.6 permil (parts per thousand)] is also indicated by an enriched delta(13)C(DIC) (-8.8 to -11.4 parts per thousand) in water from the Upper Floridan aquifer, relative to the overlying hydrogeologic units (delta(13)C(DIC) < -16 parts per thousand). Groundwater downgradient from Lake Barco was enriched in O-18 and D relative to groundwater upgradient from the lake, indicating mixing of lakewater leakage and groundwater. Downgradient from the lake, the Sr-87/Sr-86 ratio of groundwater and aquifer material become less radiogenic and the Sr2 concentrations generally increase with depth. However, Sr2 concentrations are substantially less than in upgradient groundwaters at similar depths. The lower Sr2 concentrations result from the influence of anoxic lakewater leakage on the mobility of Sr2 from clays. Based on results from mass-balance modeling, it is probable that cation exchange plays the dominant role in controlling the Sr-87/Sr-86 ratio of groundwater, both upgradient and downgradient from Lake Barco. Even though groundwater from the three distinct hydrogeologic units displays considerable variability in Sr concentration and isotopic composition, the dominant processes associated with the mixing of lakewater leakage with groundwater, as well as the effects of mineral-water interaction, can be ascertained by integrating the use of stable and radiogenic isotopic measurements of groundwater, lakewater, and aquifer minerals

A morphological analysis of Tibetan limestone pinnacles: Are they remnants of tropical karst towers and cones?, 1996, Zhang D. A. ,
Limestone pinnacles on mountain slopes in Tibet were measured for morphological analysis and the results were compared with those from tropical towers and cones on karst mountain slopes of Shuicheng, southwest China. In the form analyses, the symmetric products (P) of Tibetan pinnacles present large differences between individual pinnacles. The plan forms, represented by long/short axes ratios (R(L/S)), are mostly irregular and scattered and the diameter/height ratios (R(dfh)) reveal that the Tibetan I features could belong to any three cone or tower karat types, according to Balaze's classification of karst towers. The direction of pinnacle development seems to be primarily related to slope aspect and to geological structure. The morphological structure and orientation analyses show that pinnacle development is largely controlled by lithological and stratigraphic conditions. The closed water catchment structure, which is a basic feature in karat areas, has not been found in the limestone pinnacle areas of Tibet. The results of the form and structure analyses for the Tibetan pinnacles differ from those for tropical and subtropical karst areas. Further analysis indicates that Tibetan limestone pinnacles were formed by strong physical weathering under periglacial conditions. Four kinds of morphogenesis of the pinnacles are suggested

Geochemistry and water dynamics: Application to short time-scale flood phenomena in a small Mediterranean catchment .1. Alkalis, alkali-earths and Sr isotopes, 1997, Benothman D, Luck Jm, Tournoud Mg,
We report major, trace elements and Sr isotope data for water samples taken regularly during a four-day-long September flood of a Mediterranean river, the Vene (Herault, S. France). The objective is to combine all these data into a dynamic model that describes the origin(s) and movements of waters and their loads. This river drains the runoff from a small, mainly carbonate, partly karstified watershed with Miocene and Jurassic lithologies. The watershed is also impacted by both agricultural and urban activities. Both the dissolved and the particulate loads were analyzed. Concentrations of the dissolved components show major remobilization of almost all elements during the first few hours of the flood (water treatment plants and aerosol scavenging), followed by a sharp concentration decrease. Some major species return to their previous summer values (Ca, HCO3) while others reach low 'background' levels (Na, K, Cl, SO4). Some trace elements (Rb, Sr, Cs) show similar behaviour but (Ba) appears somewhat unaffected. Trace element concentrations and ratios define two main periods (three in the suspended particulate matter). Ratios do not allow distinguishing between the three main sources for the dissolved load in the first period (Miocene, Jurassic, water treatment plants), but clearly show the Jurassic karst influence later on. The Sr-87/Sr-86 Of the suspended particulate matter is more variable and more radiogenic than in the dissolved phase. Variations in concentration ratios and Sr isotope composition in particulates indicate the large and variable contribution of Miocene silicates with some carbonate. However, there is a need for another component with [Rb]/[Sr] higher than bedrocks, internal or external to the watershed, possibly due to differential erosion. Dissolved Ca and Mg fluxes during the flood were calculated at 0.26 ton and 0.029 ton/km(2), respectively. Even though the carbonate nature of the watershed restricts variability in Sr isotope composition in the dissolved load, we distinguish several endmembers: seawater(approximate to marine rain), Miocene marls, Jurassic limestones, water treatment plants (and possibly another attributable to fertilizers). Combined with major and trace element variational Sr isotope fluctuations indicate time-varying proportions of different water endmembers at the outflow and suggest a general dynamic model. Based on PCA (principal component analysis), a 3D representation allows to visualize the geochemical evolution of the Vene waters. In particular, Sr isotopes clearly indicate that the inflow of karstic waters during the flood was not continuous but occurred as a series of marked oscillations between flowing waters with chemical signature of Miocene lithologies and increasing flushes of deeper waters that interacted with Jurassic lithologies. (C) 1997 Elsevier Science B.V

Precipitation kinetics of calcite in the system CaCO3-H2O-CO2: The conversion to CO2 by the slow process H?->CO2? as a rate limiting step, 1997, Dreybrodt W, Eisenlohr L, Madry B, Ringer S,
Precipitation rates of CaCO3 from supersaturated solutions in the H2O - CO2 - CaCO3 system are controlled by three rate-determining processes: the kinetics of precipitation at the mineral surface, mass transport of the reaction species involved to and from the mineral surface, and the slow kinetics of the overall reaction HCO3- H --> CO2 H2O. A theoretical model by Buhmann and Dreybrodt (1985a,b) taking these processes into account predicts that, due to the slow kinetics of this reaction, precipitation rates to the surface of CaCO3 minerals depend critically on the ratio V/A of the volume V of the solution to the surface area A of the mineral in contact with it, for both laminar and turbulent flow. We have performed measurements of precipitation rates in a porous medium of sized particles of marble, limestone, and synthetic calcite, with V/A ratios ranging from 3.10(-4) to 1.2-10(-2) cm at 10 degrees C. Calcite was precipitated from supersaturated solutions with [Ca2] approximate to 4 mmol/L and an initial P-CO2 of 5.10(-3) or 1.10(-3) atm, respectively, using experimental conditions which prevented exchange of CO2 with the atmosphere, i.e., closed system. The results are in qualitative agreement with the theoretical predictions. Agreement with the observed data, however, is obtained by modifying the rate law of Plummer et al. (1978) to take into account surface-controlled inhibition effects. Experiments with supersaturated solutions containing carbonic anhydrase, an enzyme which enhances the conversion of HCO3- into CO2, yield rates increased by a factor of up to 15. This provides for the first time unambiguous experimental evidence that this reaction is rate limiting. We have also measured precipitation rates in batch experiments, stirring sized mineral particles in a solution with V/A ranging from 0.03 to 0.75 cm. These experiments also give clear evidence on the importance of the conversion of HCO3- into CO2 as rate limiting step. Taken together our experiments provide evidence that the theoretical model of Buhmann and Dreybrodt (1985a,b) can be used to predict reliable rates from the composition of CaHCO3- solutions with low ionic strength in many geologically relevant situations. Copyright (C) 1997 Elsevier Science Ltd

Changes in the isotopic and chemical composition of ground water resulting from a recharge pulse from a sinking stream, 1998, Katz B. G. , Catches J. S. , Bullen T. D. , Michel R. L. ,
The Little River, an ephemeral stream that drains a watershed of approximately ss km(2) in northern Florida, disappears into a series of sinkholes along the Cody Scarp and flows directly into the carbonate Upper Floridan aquifer, the source of water supply in northern Florida. The changes in the geochemistry of ground water caused by a major recharge pulse from the sinking stream were investigated using chemical and isotopic tracers and mass-balance modeling techniques, Nine monitoring wells were installed open to the uppermost part of the aquifer in areas near the sinks where numerous subterranean karst solution features were identified using ground penetrating radar. During high-flow conditions in the Little River, the chemistry of water in some of the monitoring wells changed, reflecting the mixing of river water with ground water. Rapid recharge of river water into some parts of the aquifer during high-flow conditions was indicated by enriched values of delta O-18 and delta deuterium (-1.67 to -3.17 per mil and -9.2 to -15.6 per mil, respectively), elevated concentrations of tannic acid, higher (more radiogenic) Sr-87/Sr-86 ratios, and lower concentrations of Rn-222, silica, and alkalinity compared to low-how conditions. The proportion of river water that mixed with ground water ranged from 0.10 to 0.67 based on binary mixing models using the tracers O-18, deuterium, tannic acid, silica, Rn-222, and Sr-87/Sr-86. On the basis of mass-balance modeling during steady-state how conditions, the dominant processes controlling carbon cycling in ground water are the dissolution of calcite and dolomite in aquifer material, and aerobic degradation of organic matter. (C) 1998 Elsevier Science B.V. All rights reserved

Dating of Speleothems in Kartchner Caverns, Arizona, 1999, Ford, D. C. , Hill, C. A.
Uranium-series dates on calcite travertine samples collected from Kartchner Caverns range from ~200- 40 Ka. These dates span from the Illinoian glacial to the Wisconsin glacial, but the majority cluster within the wetter Sangamon interglacial. Petromorphic vein quartz (>35 Ka from alpha spectrometry and >1 Ma from 234U/238U ratios) dates from an earlier thermal episode associated with Basin and Range faulting. All that can be surmised about the time of cave dissolution from these dates is that it happened >200 Ka

Spatial and Temporal Variation of Groundwater Chemistry in Pettyjohns Cave, Northwest Georgia, USA, 1999, Mayer, J.
A longitudinal study of water chemistry in Pettyjohns Cave, Georgia, reveals a wide range of major ion water chemistry at different sampling points within the cave, and pronounced seasonal water-chemistry variations at some locations. The cave occurs in the Mississippian Bangor Limestone on the east side of Pigeon Mountain in the Appalachian Plateaus physiographic province of northwest Georgia, USA. Four sampling points within the cave were monitored at approximately 2- to 3-month intervals for 22 months: a major conduit stream; a small conduit tributary; water dripping into the cave through a small fracture; and water dripping from active speleothems. Other waters, including surface water, were sampled as available. Samples were analyzed for temperature, pH, specific conductance, alkalinity, and major ions. Most spatial water chemistry trends within the cave appear to be the result of rock-water interaction along distinct subsurface flowpaths. Temporal variations, most pronounced in conduit streams, result primarily from mixing of distinct waters in varying ratios, although seasonal changes in CO2 partial pressure may account for some variation. Results illustrate the inherent spatial and temporal variability of water chemistry in karst aquifers and point to the need to design sampling programs carefully.

Quelques mcanismes chimiques du creusement des cavernes (plus _particulirement pour ltude de la zone noye), 1999, Lismonde, Baudouin
The classical influences of physical parameters and mixing corrosion are presented to study the equilibrium of the water-air-limestone chemical system. The frequent observation of cave levels in the mountain karstic systems is often associated with the greater facility of dissolution, near the water table. Some chemical mechanisms are analysed to show the greater karst corrosion on this level. Increased air pressure induces an increase in the saturation pCO2 of the water. Two confinement coefficients are used to analyse the role of a limited quantity of air in contact with water. The first (k) is the water mass/water + air mass ratio, the second (kn) is the mass of CO2 in water/ mass of CO2 in water and air ratio. These two ratios show that the latter coefficient varies with air pressure, but is proportional to the varying pCO2.

The Vazante zinc mine, Minas Gerais, Brazil; constraints in willemitic mineralization and fluid evolution, 1999, Lena Virginia Soares Monteiro, Jorge Silva Bettencourt, Baruch Spiro, Rodnei Graca, And Tolentino Flavio De Oliveira
The Vazante Mine is located in the Vazante District, the largest zinc district in Brazil. The Vazante deposit consists dominantly of an unusual willemitic ore. Small sulfide bodies are tectonically imbricated with the willemitic ore, within the Vazante shear zone. Structural styles of deformation and petrographic and isotopic evidence indicate that willemitic mineralization and deformation occurred synchronously during the Neo-Proterozoic. Various generations of hydrothermal veins and hydraulic breccias may pre-date, accompany and overprint the mineralization. Ore-formation temperatures are deduced from stable isotope geothermometry and mineral chemistry of both sulfide bodies and willemitic ore. Temperatures during the main stage of mineralization range from 206 degrees C to 294 degrees C (willemitic ore) and 317 degrees C (sulfides), and reflect the prevailing metamorphic conditions within the shear zone. The fluid from which the gangue minerals of the sulfide bodies precipitated (at 250 degrees C) had an oxygen isotopic average value of delta 18 O = +19.4 per mil. This value appears to reflect the interaction of metamorphic fluid with the carbonate rocks of the Vazante formation. At 250 degrees C, the fluid in equilibrium with the vein mineral phases and willemitic ore assemblage exhibits a uniform oxygen isotopic composition, with an average value of delta 18 O = +11.5 per mil. The positive linear covariance of delta 18 O and delta 13 C ratios of the carbonates is most likely due to the mixing of metamorphic and meteoric fluids. The delta 34 S values of sulfides indicate a direct crustal origin for the sulfur. It is suggested that the sulfur is largely derived from pre-existing sulfide bodies and has been transported by metamorphic fluids. The willemitic ore may have originated from the precipitation of metal in sulfur-poor fluids under oxidized conditions, within the Vazante shear zone.

Alteration of magnetic properties of Palaeozoic platform carbonate rocks during burial diagenesis (Lower Ordovician sequence, Texas, USA), 1999, Haubold Herbert,
Palaeomagnetic and sedimentological investigations of samples from two sections of correlative Iapetan platform carbonate rocks from Texas, USA, were made to test whether their magnetic properties reflect diagenetic alteration associated with regional and local tectonism. The Honeycut Formation (Llano Uplift area, central Texas), in close proximity to the late Palaeozoic Ouachita orogenic belt, exhibits a distinct correlation between magnetization intensity, magnetization age (direction) and lithofacies. Mudstones preserve their weak primary Early Ordovician magnetization, whereas dolo-grainstones carry a strong Pennsylvanian magnetization residing in authigenic magnetite. Fluid migration associated with the Ouachita Orogeny has been focused in lithofacies with high permeability and caused dolomite recrystallization and pervasive remagnetization. Magnetization intensity trends covary with fluid/rock ratios. However, aquitards were either not affected or less affected by these fluids. Unlike the Honeycut Formation, permeable rocks of the El Paso Group (Franklin Mountains, west Texas) carry only a non-pervasive Pennsylvanian magnetization. Therefore, a larger percentage of El Paso Group samples retain a primary Early Ordovician signature. This area is further removed from the Ouachita front, and, thus, the influence by Pennsylvanian orogenic fluids was less pronounced

Petrography, strontium, barium and uranium concentrations, and strontium and uranium isotope ratios in speleothems as palaeoclimatic proxies: Soreq Cave, Israel, 1999, Ayalon A, Barmatthews M, Kaufman A,
The reconstruction of the palaeoclimate of the eastern Mediterranean region for the last 60 ka BP is based on the delta(18)O and delta(13)C variations of speleothems from Soreq Cave, Israel. Climatic conditions during most of the rime interval between 60 and 17 ka BP (the period equivalent to the last glacial) were relatively cold and dry, while they were warmer and wetter from 17 ka BP to the present. At similar to 17 ka BP, there was a major climatic change with a sharp increase in annual rainfall and temperature and a very wet period occurring between 8.5 and 7.0 ka BP. During the colder and drier period, large, detritus-free, preferentially oriented calcite crystals were deposited from slow-moving water. As a result of a sharp change in the hydrological regime at similar to 17 ka BP, fast-moving water started entrainment of the soil and carrying detrital material into the cave, and the calcite crystals deposited became small and anhedral. Coinciding with the petrographic and isotopic changes, a sharp drop occurred in the concentrations of strontium, barium and uranium, and in the ratios Sr-87/Sr-86 and (U-234/U-238)(0), which reached mini mum values during the wettest period. This drop reflects enhanced weathering of the soil dolomite host rock. During colder and drier periods, higher trace-element concentrations and higher isotopic ratios reflect an increase in the contribution of salts derived from exogenic sources (sea spray and aeolian dust), and a reduced contribution of weathering from the host dolomites

Results 16 to 30 of 116
You probably didn't submit anything to search for