MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That allogene stream is a surface-water course flowing over a karst terrane, but fed by a spring (or springs) issuing from a nonkarst terrane [20]. synonyms: (french.) riviere allogene (cours d'eau); (german.) allochthoner fluss (all. waberlauf); (greek.) allothigenes ryax, or potamos; (italian.) corso d'acqua allogeno; (spanish.) rio aloctono; (turkish.) karst disi kokenli akarsu; (yugoslavian.) alogena rijeka, alogena reka.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 7
What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for accumulation (Keyword) returned 131 results for the whole karstbase:
Showing 16 to 30 of 131
Les travertins; accumulations carbonatees associees aux systemes karstiques, sequences sedimentaires et paleoenvironnements quaternaires, 1991,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Magnin F. , Guendon J. L. , Vaudour J. , Martin P. ,

Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Magnin F. , Guendon J. L. , Vaudour J. , Martin P. ,
In the valleys of southeastern France, below karst massifs, river deposits with travertines show vertical sedimentary sequences always similar, with, from bottom to top: gravels, silts, chalks, travertines s.s. (stromatolitic encrustations with laminated facies), travertinous sand, silts. The study of flora and fauna fossilized by these formations shows a good correlation between the maximum of carbonate deposition (travertinous facies s.s.) and the optimum of vegetation development (forest). And finally, behind calcareous dams edified by travertine, paludal and lacustrine fields are environments developed trapping diversified sediments (clays, peats, silts,...). Then, dam and lake are forming a unit that we can call a 'travertine system'

Radon hazard in caves: a monitoring and management strategy, 1992,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Lyons, Ruth G.

Factors governing the accumulation of radon in caves are discussed. Preliminary measurements in some Australian caves show levels which vary by factors of 4 (seasonal) and 75 (diurnal), with the upper levels approaching recommended maximum exposure levels for some tourist cave guides.

Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Evans Mw, Snyder Sw, Hine Ac,
We collected 43 km of high resolution seismic reflection profiles from a 14.5-hectare lake in the central Florida sinkhole district and data from three adjacent boreholes to determine the relationship between falling lake levels and the underlying karst stratigraphy. The lake is separated from karstified Paleogene to early Neogene carbonates by 65-80 m of siliciclastic sands and clays. The carbonate and clastic strata include three aquifer systems separated by clay-confining units: a surficial aquifer system (fine to medium quartz sand in the upper 20-30 m), the 25-35 m thick intermediate aquifer system (in Neogene siliciclastics), and the highly permeable upper Floridan aquifer system in Paleogene to early Neogene limestones. Hydraulic connection between these aquifer systems is indicated by superjacent karst structures throughout the section. Collapse zones of up to 1000 m in diameter and > 50 m depth extend downward from a prominent Middle Miocene unconformity into Oligocene and Upper Eocene limestones. Smaller sinkholes (30-100 m diameter, 10-25 m depth) are present in Middle to Late Neogene clays, sands, and carbonates and extend downward to or below the Middle Miocene unconformity. Filled and open shafts (30-40 m diameter; 10-25 m depth) ring the lake margin and overlie subsurface karst features. The large collapse zones are localized along a northeast-southwest line in the northern ponds and disrupt or deform Neogene to Quaternary strata and at least 50 m of the underlying Paleogene carbonate rocks. The timing and vertical distribution of karst structures are used to formulate a four-stage model that emphasizes stratigraphic and hydrogeologic co-evolution. (1) Fracture-selective shallow karst features formed on Paleogene/early Neogene carbonates. (2) Widespread karstification was limited by deposition of Middle Miocene clays, but vertical karst propagation continued and was focused because of the topographic effects of antecedent karst. (3) Groundwater heads, increase with the deposition of thick sequences of clastics over the semipermeable clays during Middle and Late Neogene time. The higher water table and groundwater heads allowed the accumulation of acidic, organic-rich soils and chemically aggressive waters that percolated down to Paleogene carbonates via localized karst features. (4) After sufficient subsurface dissolution, the Paleogene carbonates collapsed, causing disruption and deformation of overlying strata. The seismic profiles document an episodic, vertically progressive karst that allows localized vertical leakage through the clay-confining units. The spatial and temporal karst distribution is a result of deposition of sediments with different permeabilities during high sea levels and enhanced karst dissolution during low sea levels. Recent decreases in the potentiometric elevation of the Floridan Aquifer System simulates a sea-level lowstand, suggesting that karst dissolution will increase in frequency and magnitude

Tectonic Speleogenesis of Devils Hole, Nevada, and Implications for Hydrogeology and the Development of Long, Continuous Paleoenvironmental Records, 1994,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Riggs Alan C. , Carr W. J. , Kolesar Peter T. , Hoffman Ray J. ,
Devils Hole, in southern Nevada, is a surface collapse into a deep, planar, steeply dipping fault-controlled fissure in Cambrian limestone and dolostone. The collapse intersects the water table about 15 m below land surface and the fissure extends at least 130 m deeper. Below water, most of the fissure is lined with a >30-cm-thick layer of dense maxillary calcite that precipitated continuously from groundwater for >500,000 yr. The thick mammillary calcite coat implies a long history of calcite-supersaturated groundwaters, which, combined with the absence of dissolutional morphologies, suggests that Devils Hole was not formed by karst processes. Devils Hole is located in a region of active extension; its tectonic origin is shown by evidence of spreading of its planar opening along a fault and by the orientation of its opening and others nearby, perpendicular to the northwest-southeast minimum principal stress direction of the region. Most Quaternary tectonic activity in the area, including seismicity and Quaternary faults and fractures, occurs on or parallel to northeast-striking structures. The hydrogeologic implications of this primarily structural origin are that fracture networks and caves opened by extensional tectonism can act as groundwater flowpaths functionally similar to those developed by karst processes and that, during active extension, transmissivity can be maintained despite infilling by mineral precipitation. Such extensional environments can provide conditions favorable for accumulation of deposits preserving long, continuous paleoenvironmental records. The precipitates in Devils Hole store chronologies of flow system water-level fluctuations, hydrochemistry, a half-million-yr proxy paleoclimate record, evidence of Devils Hole's tectonic origin, and probably atmospheric circulation

Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Lastennet R. , Mudry J. ,
Karstification is a slow geodynamical process, controlled by the interaction between dissolution kinetics and flow dynamics. Moreover, mechanisms of network clogging by calcite precipitation or non-soluble clay accumulation are slow and continuous phenomena. This evolution of a karst system can be widely modified during exceptional rainfall episodes, such as the 22/09/92 storm (> 300 mm) near Vaison-la-Romaine. Such an impulse can modify the hydraulical behaviour of a massif, by unclogging the outlets of the saturated zone or the drainage network of the aquifer, and change hydrodynamical features of a spring (storage capacity etc.). This phenomenon has been demonstrated in a north Vaucluse karst aquifer whose recession coefficient has increased 7-fold and stored volume divided by 6

Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Pulidobosch A. , Padilla A. , Dimitrov D. , Machkova M. ,
The discharge variability of some karst springs in Bulgaria has been investigated in detail within a region situated in the semiarid zone where most of the principal processes controlling spring outflow (evapotranspiration, snow accumulation, karstic functioning) are significant. While the karstification was notable in the Kotel and Bistretz springs with a predominance of quickflow, in the Beden system the baseflow was higher and had a behaviour similar to a porous aquifer. Univariate and bivariate spectral analyses were applied as a suitable tool in preparation for a further application of precipitation-discharge relationship models

Evaporites, brines and base metals: What is an evaporite? Defining the rock matrix, 1996,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Warren J. K. ,
This paper, the first of three reviews on the evaporite-base-metal association, defines the characteristic features of evaporites in surface and subsurface settings. An evaporite is a rock that was originally precipitated from a saturated surface or near-surface brine in hydrological systems driven by solar evaporation. Evaporite minerals, especially the sulfates such as anhydrite and gypsum, are commonly found near base-metal deposits. Primary evaporites are defined as those salts formed directly via solar evaporation of hypersaline waters at the earth's surface. They include beds of evaporitic carbonates (laminites, pisolites, tepees, stromatolites and other organic rich sediment), bottom nucleated salts (e.g. chevron halite and swallow-tail gypsum crusts), and mechanically reworked salts (such as rafts, cumulates, cross-bedded gypsarenites, turbidites, gypsolites and halolites). Secondary evaporites encompass the diagenetically altered evaporite salts, such as sabkha anhydrites, syndepositional halite and gypsum karst, anhydritic gypsum ghosts, and more enigmatic burial associations such as mosaic halite and limpid dolomite, and nodular anhydrite formed during deep burial. The latter group, the burial salts, were precipitated under the higher temperatures of burial and form subsurface cements and replacements often in a non-evaporite matrix. Typically they formed from subsurface brines derived by dissolution of an adjacent evaporitic bed. Because of their proximity to 'true' evaporite beds, most authors consider them a form of 'true' evaporite. Under the classification of this paper they are a burial form of secondary evaporites. Tertiary evaporites form in the subsurface from saturated brines created by partial bed dissolution during re-entry into the zone of active phreatic circulation. The process is often driven by basin uplift and erosion. They include fibrous halite and gypsum often in shale hosts, as well as alabastrine gypsum and porphyroblastic gypsum crystals in an anhydritic host. In addition to these 'true' evaporites, there is another group of salts composed of CaSO4 or halite. These are the hydrothermal salts. Hydrothermal salts, especially hydrothermal anhydrite, form by the subsurface cooling or mixing of CaSO4- saturated hydrothermal waters or by the ejection of hot hydrothermal water into a standing body of seawater or brine. Hydrothermal salts are poorly studied but often intimately intermixed with sulfides in areas of base-metal accumulations such as the Kuroko ores in Japan or the exhalative brine deeps in the Red Sea. In ancient sediments and metasediments, especially in hydrothermally influenced active rifts and compressional belts, the distinction of this group of salts from 'true' evaporites is difficult and at times impossible. After a discussion of hydrologies and 'the evaporite that was' in the second review, modes and associations of the hydrothermal salts will be discussed more fully in the third review

L'halloysite karstique; comparaison des gisements types de Wallonie (Belgique) et du Perigord (France), 1997,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Perruchot A. , Dupuis C. , Brouard E. , Nicaise D. , Ertus R. ,
Two cryptokarstic (covered karsts) halloysitic deposits were compared: the Entre Sambre et Meuse in Belgium and the Perigord in France. Both belong to a continental margin subject to marine transgression and regression cycles which enhance the karstic activity. This geodynamic context appears to be very favourable to the formation of halloysite. The similarity of the geodynamic context of both sites leads to a genetic convergence linked to specific properties of the cryptokarstic system, especially, the ability to collect the percolating waters and to juxtapose the conditions of precipitation, accumulation and maturation of the halloysite silico-aluminous gel precursors. However, each site also displays pronounced specificities relevant to: the nature of the host rock of the halloysite (a partly silicified limestone in the first, a smectite-kaolinite argilite in the second); the aluminium source (allochthonous in the first, relatively autochthonous in the second); and the halloysite content of the deposits (of approximately 100% in the first, and 40% maximum in the second)

Evolution and dynamics of soil-geomorphic systems in karst landscapes of the European north, 1997,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Goryachkin S. V. , Shavrina E. V. ,
Six types of soil-geomorphic systems within sulfate-karst landscapes in the north of European Russia have been investigated. The distinctions in structure and composition of these systems are conditioned by the tectonic fault pattern and jointing of the karstland. The soil data obtained allow us to gain an insight into the essence of geomorphic processes and to evaluate the dynamics of land surface in karst landscapes. Conceptual models of the origin and dynamics of soil-geomorphic systems of karst landscapes and the model of their evolution within the zone of dense jointing of gypsum rocks under the impact of denudation processes are suggested. The assessment of geomorphic functions of the soils in karst area attests to their importance as the controls of potential erosion. Only soil-biotic processes (Litter accumulation) are undoubtedly protective, while other processes may either hinder or strongly intensify the erosion. After the Quaternary sediments are removed and the erosion starts to penetrate into the hard gypsum layer, a strong positive feedback between soil-forming and karst-forming processes appears. Thus, the final stages of the evolution of soil-geomorphic systems in karst landscapes are characterized by great dynamism

The role of high-energy events (hurricanes and/or tsunamis) in the sedimentation, diagenesis and karst initiation of tropical shallow water carbonate platforms and atolls, 1998,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Jan F. G. B. L. ,
Karst morphology appears early, even during carbonate sediment deposition. Examples from modern to 125-ka-old sub-, inter- and supratidal sediments are given from the Bahamas (Atlantic Ocean) and from Tuamotuan atolls (southeastern Pacific Ocean), with mineralogical and hydrological analyses. Karstification is favoured by the aragonitic composition of bioclasts coming from the shallow marine bio-factory. Lithification by aragonite cements appears as a rim around carbonate deposits and dissolution and non-cementation start at the same time on modern supratidal deposits (Andros micrite or atoll coral rudite) and provoke the formation of a central depression on small or large carbonate platforms. In fact, this early solution of the centre of platforms is closely related to the location of each of the studied examples on hurricane tracks. High-energy events, such as hurricanes and tsunamis, affect sediment transport but hurricanes also affect diagenesis as a result of the enormous volume of freshwater carried and discharged along their paths. This couple, lithification- solution, is localised at sea level and accompanies sea-level fluctuations along the eustatic curve. Because of the precise location of hurricane action all around the Earth, early karstification by aragonite solution, cementation and supratidal carbonate sediment accumulations thigh-energy trails) act together on all the platforms and atolls located inside the Tropics (23 degrees 27') between roughly 5 degrees-10 degrees and 25 degrees on both hemispheres. However, early karstification acts alone on shallow carbonate platforms including atolls along the equatorial belt between 5 degrees-10 degrees N and 5 degrees-10 degrees S. These early steps of karstification are linked to the ocean-atmosphere interface due to the bathymetrical position of shallow carbonate platforms, including atolls. They lead to complex karstified emerged platforms, called high carbonate islands, where carbonate diagenesis, together with the development of bauxite- and/or a phosphate-rich cover and phreatic lens, will occur. (C) 1998 Elsevier Science B.V. All rights reserved

Seasonal Effects on the Geochemical Evolution of the Logsdon River, Mammoth Cave, Kentucky., 1998,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Anthony, Darlene M. , Ms

The following research describes the collection and evaluation of geochemical data from the Logsdon River, an open-flow conduit that drains a portion of the Turnhole Spring drainage basin within the Mammoth Cave karst aquifer of south-central Kentucky. This spatial survey of nearly 10 km of continuous base-level conduit included seasonal sampling of carbon dioxide partial pressures (PCO2), dissolved ions, and saturation indices for calcite (SIcal). The highest PCO2 are found at the upstream site closest to the Sinkhole Plain recharge area, which creates undersaturated conditions. Rapid outgassing of CO2 into the cave atmosphere creates oversaturated conditions for several thousand meters. This change in chemistry results in the accumulation of travertine in these areas. A boost in PCO2 roughly half-way through the flow path returns the water to slightly undersaturated conditions. The most likely source for additional CO2 is in-cave organic decay, as the boost also occurs during winter months when microbial activity in the soil is at a minimum. A general decline in Ca2+, Mg2+, and HCO3- concentrations occurred over the distance through the Logsdon River conduit. This decline may reflect a diluting of water by localized inputs from the Mammoth Cave Plateau and precipitation of travertine along the flow path. Although values for all parameters are greater in summer than winter, the trend in evolution is similar for both seasonal extremes.
The nature of the transition from summer to winter conditions in the aquifer was investigated by way of an intensive study of the geochemistry at the Logsdon River monitoring well. The relationship between conductivity (spC) and pH was evaluated during both seasons in an attempt to predict the activity of hydrogen for any given water sample, based on continuous spC measurements at the well. Data collected during the 1997-98 seasonal transitions supported a single, nonlinear regression equation that may represent two distinct seasonal regimes.

Basic phyisico-chemical Karst water properties on Notranjsko, 1998,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Kogovš, Ek Janja

In 1986 and 1987 seven series of samples were taken at 36 to 47 sampling points on Babno, Loško and Cerkniško Polje and on Bloke and at Loški potok in order to find out their physico-chemical properties and their quality. Rainwater flows from the limestone and dolomite landscape around Babno, Loško and Cerkniško polje into springs feeding the sinking streams. The nitrate level at most of the springs was below 4 mg NO3-/l and chloride below 5 mg Cl-/l; the o-phosphate level varied around the value of 0.05 mg PO43-/l. The bacteriological analyses of the spring waters showed that they are not of drinking quality and only few springs were seasonally of good quality. Poorer quality was found in springs with populated catchments, such as are Pudobski Izvir, Podgorski and Mežnarjev Studenec and, obviously in all the sinking waters at swallow-holes where the nitrate and chloride level was up to 20 mg/l and phosphate up to 5 mg/l. Flowing over karst poljes this water receives pollution due to habitations and industry. As the water of these sinking streams reappears downstream in several lower-lying karst poljes this results in the transport and accumulation of pollution downstream even in springs that are captured for water supply.

Interaction between cave systems and the lowering karst surface; case study: Laški Ravnik, 1998,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Š, Uš, Terš, Ič, France

An inventory of denuded and exhumed deep phreatic cave forms that have been detected on the karstified surface of the Laški Ravnik (east of Planinsko polje, Slovenia) is presented and described. Features observed include denuded completely-filled channels, washed-out channels, accumulations of cave loam (originating from caves that are now completely destroyed), conglomerate and flowstone. The source area for the sedimentary infills might be the Cerkniščica river catchment. Cave patterns revealed by the study fit well to aspects of the Ford-Ewers' cave development model, and also indicate the validity of some of the observations made by R. Curl, S. Worthington and D. Lowe.

New Pleistocene Vertebrate Assemblages in the Breitscheid-Erdbach Cave System (Iberg Limestone, Dill Basin, Germany), 1999,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Kaiser, T. M.
A substantial cave system developed in Devonian reef carbonates at the eastern foothills of the Westerwald Mountains (Hessen, Germany) was first opened in 1993 by limestone quarrying. The system is split into 4 karst levels that appear to represent stages of cyclic karst formation. All accessible levels are presently in the vadose state. Clastic sediments filling fossil voids have preserved two rich Pleistocene vertebrate assemblages. Most specimens are identified as bats or the cave bear Ursus spelaeus. The assemblages are at least partly allochthonous. The significance of the accumulations lies in the preservation of an undisturbed surface assemblage, which most likely has not been disturbed since the late Pleistocene.

Results 16 to 30 of 131
You probably didn't submit anything to search for