MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_left.php on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That hydroscopic water is condensed water at a solid surface [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for wetlands (Keyword) returned 21 results for the whole karstbase:
Showing 16 to 21 of 21
Groundwater hydrology of springs - Engineering, theory, management, and sustainability, 2010,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943

Edited by two world-renowned hydrologists, this book will provide civil and environmental engineers with a comprehensive reference for managing and sustaining the water quality of springs. With contributions from experts from around the world, this text covers many of the world's largest springs, providing a unique global perspective on how engineers around the world are utilizing engineering principles for coping with problems such as: Mismanagement, overexploitation and their impacts on both water quantity and quality. The book is divided into two parts: Part One will explain the theory and principles of hydrology as they apply to springs while, Part Two will provide a rare look into the engineering practices used to manage some of the most important springs from around the world.

Groundwater Hydrology of Water Resource Series Water is an essential environmental resource and one that needs to be properly managed. As the world places more emphasis on sustainable water supplies, the demand for expertise in hydrology and water resources continues to increase. This series is intended for professional engineers, who seek a firm foundation in hydrology and an ability to apply this knowledge to solve problems in water resource management. Future books in the series are: Groudwater Hydrology of Springs (2009), Groudwater Hydrology of River Basins (2009), Groudwater Hydrology of Aquifers (2010), and Groudwater Hydrology of Wetlands (2010). First utilized as a primary source of drinking water in the ancient world, springs continue to supply many of the world's cities with water. In recent years their long-term sustainability is under pressure due to an increased demand from groundwater users. Edited by two world-renowned hydrologists, Groundwater Hydrology of Springs: Theory, Management, and Sustainability will provide civil and environmental engineers with a comprehensive reference for managing and sustaining the water quality of Springs. With contributions from experts from around the world, this book cover many of the world's largest springs, providing a unique global perspective on how engineers around the world are utilizing engineering principles for coping with problems such as: mismanagement, overexploitation and their impacts both water quantity and quality. The book will be divided into two parts: part one will explain the theory and principles of hydrology as they apply to Springs while part two will provide a rare look into the engineering practices used to manage some of the most important Springs from around the world.


KARST DEVELOPMENT IN THE GLACIATED AND PERMAFROSTREGIONS OF THE NORTHWEST TERRITORIES, CANADA, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Ford Derek

 

The Northwest Territories of Canada are ~1.2 million km2 in area and appear to contain a greater extent and diversity of karst landforms than has been described in any other region of the Arctic or sub-Arctic. The Mackenzie River drains most of the area. West of the River, the Mackenzie Mountains contain spectacular highland karsts such as Nahanni (Lat. 62° N) and Canol Road (Lat. 65° N) that the author has described at previous International Speleological Congresses. This paper summarizes samples of the mountain and lowland karst between Lats. 64–67° N that are located east of the River. The Franklin Mountains there are east-facing cuestas created by over-thrusting from the west. Maximum elevations are ~1,000 m a.s.l., diminishing eastwards where the cuestas are replaced by undeformed plateaus of dolomite at 300–400 m asl that overlook Great Bear Lake. In contrast to the Mackenzie Mountains (which are generally higher) all of this terrain was covered repeatedly by Laurentide Continental glacier ice flowing from the east and southeast. The thickness of the last ice sheet was >1,200 m. It receded c.10,000 years ago. Today permafrost is mapped as “widespread but discontinuous” below 350 m a.s.l. throughout the region, and “continuous” above that elevation. The vegetation is mixed taiga and wetlands at lower elevations, becoming tundra higher up. Access is via Norman Wells (population 1,200), a river port at 65° 37’N, 126° 48’W, 67 m a.s.l.: its mean annual temperature is -6.4 °C (January mean -20 °C, July +14 °C) and average precipitation is ~330 mm.y-1, 40 % falling as snow. In the eastern extremities a glacial spillway divides the largest dolomite plateau into “Mahony Dome” and “Tunago Dome”. The former (~800 km2) has a central alvar draining peripherally into lakes with overflow sinkholes, turloughs, dessicated turloughs, and stream sinks, all developed post-glacially in regular karst hydrologic sequences. Tunago Dome is similar in extent but was reduced to scablands by a sub-glacial mega-flood from the Great Bear basin; it is a mixture of remnant mesas with epikarst, and wetlands with turloughs in flood scours. Both domes are largely holokarstic, draining chiefly to springs at 160–180 m a.s.l. in the spillway. The eastern limit of overthrusting is marked by narrow ridges created by late-glacial hydration of anhydrite at shallow depth in interbedded dolostones and sulphate rocks. Individual ridges are up to 60 km long, 500–1,000 m wide, 50–250 m in height. They impound Lac Belot (300 km2), Tunago Lake (120 km2) and many lesser lakes, all of which are drained underground through them. In the main overthrust structures, the Norman Range (Franklin Mountains) is oriented parallel with the direction of Laurentide ice flow. It displays strongly scoured morphology with elongate sinkholes on its carbonate benches. In contrast, the Bear Rock Range is oriented across the ice flow, has multiple cuestas, is deeply furrowed and holokarstic but preserves pinnacle karst on higher ground due to karst-induced polar thermal (frozen-down) conditions at the glacier base there.


LITTLE LIMESTONE LAKE: A BEAUTIFUL MARL LAKE IN MANITOBA, CANADA, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Ford Derek

 

Marl lakes are those accumulating fine-grained bottom sediments that include at least 15% CaCO3. They are found worldwide. The most visually attractive, however, have higher proportions of CaCO3, with crystallites precipitating in the water to give it a rich and opaque duck-egg blue colouration. From the literature, such lakes are largely limited to recently glaciated carbonate rock terrains. Most are also shallow, with much or all of the water column being in the photic zone. Little Limestone Lake, (Lat. 53°47’N, Long. 99°19’W in the province of Manitoba) is the finest example that the author has seen. It stands out sharply from neighbouring lakes in summertime colour satellite imagery due to the intensity and uniformity of its colour. The lake occupies a shallow glacial trough scoured in a plain of flat-lying cyclothem dolomites. It is ~12 km long, 1–5 km wide, rarely >7 m deep. Including bordering wetlands, it occupies ~45 % of the area of an elongated, narrow topographic basin. Recharge is through impoverished boreal forest with little soil cover; it discharges chiefly as springs and seeps along and below the shore. Mean annual temperature is ~0 °C, and precipitation is ~475 mm.y1. Previous studies of springs in the surrounding region showed ground waters to be simple bicarbonate composition, with TDS = 230–300 mg.l-1 (Ca 40–60 mg.l-1, Mg 30–40 mg.l-1). Grab sampling at 27 sites throughout the lake found the waters de-gassed to 125–135 mg.l-1, placing them in the mid-range of one hundred marl lakes investigated in more detail in the British Isles. Ca was reduced to 25–30 mg.l-1, while Mg was stable at 30–40 mg.l-1. There were 2–3 mg.l-1 of free CO3 in two fully analysed samples, indicating that plankton photosynthesis might be occurring. However, samples of the bottom marl were predominantly inorganic in their composition. Little Limestone Lake is visually spectacular because it is almost entirely groundwater-fed, with a ratio of recharge area to lake area that is low. It has no large, chemically equilibrated, surface streams entering it. In contrast, the dozens of nearby lakes (similar, larger or smaller in size) are regularly flushed by channelled storm water and, although they also produce some carbonate marl, cannot maintain high densities of crystallites in suspension. Little Limestone Lake was placed under legislated protection as a provincial park in June 2011.


Hydrogeological and Environmental Investigations in Karst Systems, 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943

Karst is the result of climatic and geohydrological processes, mainly in carbonate and evaporite rocks, during geological periods of Earth history. Dissolution of these rock formations over time has generated karst aquifers and environments of significant water and mineral resources. In addition, beautiful landscapes have been created which constitute natural parks, geosites, and caves. Due to their origin and nature, karstified areas require investigation with special techniques and methodology. International collaboration and discussions on advances in karst research are necessary to promote Karst Science. The International Symposium on Karst Aquifers is one of the worldwide events held periodically to specifically address karst environments. The symposium constitutes an ongoing international forum for scientific discussion on the progress made in research in karst environments. The first and second symposiums were organized in Nerja (near Malaga, Spain), in 1999 and 2002; the third and fourth symposiums were held in Malaga city in 2006 and 2010. The 5th International Symposium on Karst Aquifers (ISKA5) occurred in Malaga on during October 14–16, 2014. It was organized by the Centre of Hydrogeology University of Málaga (CEHIUMA) and the Spanish Geological Survey (IGME), in cooperation with UNESCO and the International Association of Hydrogeologists (IAH) Karst Commission. More than 100 contributions were received from 30 countries on five continents. Presentations made during the symposium and published in this book are a compendium of 70 of these manuscripts. Papers submitted by April 2014, were peer-reviewed and subsequently accepted by the Scientific Committee. Contributions are grouped into five sections:

• Methods Utilized to Study Karst Aquifers.

• Karst Hydrogeology.

• Mining and Engineering in Karst media.

• Karst Cavities.

• Karst Geomorphology and Landscape.

A large part of the contributions, 30 %, is related to Methods Utilized to Study Karst Aquifers. Several issues are addressed: methods for groundwater recharge assessment, dye tracer and stable isotope applications, analysis of hydrodynamic data and hydrochemistry, among others. Most contributions, 40 %, however, are on Karst Hydrogeology. These are primarily in connection with various topics such as numerical modeling in karst, floods, karst groundwater flow, protection of karst aquifers or pollution, and vulnerability in karst. Five percent of the published papers deal with Mining and Engineering in Karst Media. These papers are about tunnels, hydrogeological risks, and karst risk assessment in mining and civil engineering. Another section concerning Karst Cavities encompasses 15 % of the contributions. These chapters deal with corrosion and speleogenetic processes, speleothems, CO2 sources, the global carbon cycle in endokarst, and the study of past climate. Karst Geomorphology and Landscape constitutes the remaining 10 % of the contributions. These papers are related to karst features, wetlands, hypogene speleogenesis, geodiversity, and karstic geosites. The results of project work performed by karst specialists worldwide are described in the book. Included in it are experiences from pilot sites, methodologies, monitoring, and data analyses in various climatic, geological, and hydrogeological contexts. Material presented may be utilized for activities such as teaching and technical-professional applications particularly as they apply to the increasingly multidisciplinary nature of karst studies. Information provided may also be useful to decisions makers in making critical decisions regarding development in karst regions. Scientists and engineers and many of the lay public interested in karst environments will benefit from the contents


Basinscale conceptual groundwater flow model for an unconfined and confined thick carbonate region, 2015,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943

Application of the gravitydriven regional groundwater flow (GDRGF) concept to the hydrogeologically complex thick carbonate system of the Transdanubian Range (TR), Hungary, is justified based on the principle of hydraulic continuity. The GDRGF concept informs about basin hydraulics and groundwater as a geologic agent. It became obvious that the effect of heterogeneity and anisotropy on the flow pattern could be derived from hydraulic reactions of the aquifer system. The topography and heat as driving forces were examined by numerical simulations of flow and heat transport. Evaluation of groups of springs, in terms of related discharge phenomena and regional chloride distribution, reveals the dominance of topographydriven flow when considering flow and related chemical and temperature patterns. Moreover, heat accumulation beneath the confined part of the system also influences these patterns. The presence of cold, lukewarm and thermal springs and related wetlands, creeks, mineral precipitates, and epigenic and hypogenic caves validates the existence of GDRGF in the system. Vice versa, groups of springs reflect rock–water interaction and advective heat transport and inform about basin hydraulics. Based on these findings, a generalized conceptual GDRGF model is proposed for an unconfined and confined carbonate region. An interface was revealed close to the margin of the unconfined and confined carbonates, determined by the GDRGF and freshwater and basinal fluids involved. The application of this model provides a background to interpret manifestations of flowing groundwater in thick carbonates generally, including porosity enlargement and hydrocarbon and heat accumulation.


Basin-scale conceptual groundwater flow model for an unconfined and confined thick carbonate region, 2015,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943

Application of the gravity-driven regional  groundwater flow (GDRGF) concept to the  hydrogeologically complex thick carbonate system of the  Transdanubian Range (TR), Hungary, is justified based on  the principle of hydraulic continuity. The GDRGF concept  informs about basin hydraulics and groundwater as a  geologic agent. It became obvious that the effect of  heterogeneity and anisotropy on the flow pattern could be  derived from hydraulic reactions of the aquifer system.  The topography and heat as driving forces were examined  by numerical simulations of flow and heat transport.  Evaluation of groups of springs, in terms of related  discharge phenomena and regional chloride distribution,  reveals the dominance of topography-driven flow when  considering flow and related chemical and temperature  patterns. Moreover, heat accumulation beneath the confined  part of the system also influences these patterns. The  presence of cold, lukewarm and thermal springs and  related wetlands, creeks, mineral precipitates, and epigenic  and hypogenic caves validates the existence of GDRGF in  the system. Vice versa, groups of springs reflect rock–  water interaction and advective heat transport and inform  about basin hydraulics. Based on these findings, a  generalized conceptual GDRGF model is proposed for  an unconfined and confined carbonate region. An interface  was revealed close to the margin of the unconfined and  confined carbonates, determined by the GDRGF and  freshwater and basinal fluids involved. The application  of this model provides a background to interpret manifestations  of flowing groundwater in thick carbonates  generally, including porosity enlargement and hydrocarbon  and heat accumulation.


Results 16 to 21 of 21
You probably didn't submit anything to search for