Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That aquifer system is a body of permeable and poorly permeable material that functions regionally as a water-yielding unit; it comprises two or more permeable beds separated at least locally by confining beds that impede ground-water movement but do not greatly affect the regional hydraulic continuity of the system; includes both saturated and unsaturated parts of permeable material [22].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for carbonate rocks (Keyword) returned 212 results for the whole karstbase:
Showing 16 to 30 of 212
Hydrogeological features of carbonate rocks, 1984, Castany G.

Factors controlling Micro-solutional Karren on Carbonate Rocks of the Griqualand West Sequence, South Africa, 1985, Marker M. E.

Origin of caves and other solution openings in the unsaturated (vadose) zone of carbonate rocks; a model for CO 2 generation, 1985, Wood Warren W. ,

Carbonate surface solution in the classical karst, 1987, Cucchi Franco, Finocchiaro Furio, Forti Fabio
The current research on the dissolution of carbonate rocks in the Karst of Trieste indicates that the average degradation of surfaces exposed to atmospheric agents is 0.028 mm/year with an average rainfall of 1350 mm. The maximum levels (0.031 mm/year) correspond to micro-crystalline limestones, the minimum values (0.014 mm/year) to dolomites.

Subsidence hazard prediction for limestone terrains, as applied to the English Cretaceous Chalk, 1987, Edmonds Cn, Green Cp, Higginbottom Ie,
Soluble carbonate rocks often pose a subsidence hazard to engineering and building works, due to the presence of either metastable natural solution features or artificial cavities. There is also an inherent danger to the public and lives have been lost because of unexpected ground collapses. Although site investigation techniques are becoming increasingly elaborate, the detection of hazardous ground conditions associated with limestones is frequently difficult and unreliable. Remedial measures to solve subsidence problems following foundation failure are expensive. It would be advantageous if areas liable to subsidence could be identified in a cost-effective manner in advance of planning and ground investigation. Hazard mapping could then be used by planners when checking the geotechnical suitability of a proposed development or by engineering geologists/geotechnical engineers to design the type of ground investigation best suited to the nature and scale of the potential hazard. Recent research focussed on the English Chalk outcrop has led to the development of two new models to predict the subsidence hazard for both natural solution features and artificial cavities. The predictive models can be used to map the hazard at any given chalkland locality, as a cost-effective precursor to ground investigation. The models, although created for the Chalk outcrop, have important implications for all types of limestone terrain. The basis of the predictive modelling procedure is an analysis of the spatial distribution of nearly 1600 natural solution features, and more than 850 artificial cavity locations, identified from a wide varietyy of sources, including a special appeal organized by CIRIA. A range of geological, hydrogeological and geomorphological factors are evaluated to identify significant relationships with subsidence. These factors are ranked, numerically weighted and incorporated into two quantitative subsidence hazard model formulae. The models can be applied to perform hazard mapping

Natural and artificial cavities as ground engineering hazards, 1987, Culshaw Mg, Waltham Ac,
The occurrences of natural and artificial cavities are reviewed and their causes are assessed. Natural cavities are found principally in carbonate rocks and the processes of sinkhole formation are described. Solution cavities in non-carbonate rocks and cavities in insoluble rocks are also considered. Extraction methods for coal, metalliferous minerals and salts are described in relation to the creation of underground cavities. An outline procedure for locating cavities emphasizes the importance of the desk study in this type of investigation and the difficulty of proving the absence of cavities beneath a site

Cave dams of the Guanyan System, Guangxi, China, 1987, Smart P. L. , Waltham A. C. ,
With well over 1 million km2 of carbonate rocks exposed at the surface, and a history of exploitation spanning in excess of 2000 years, the Chinese probably have more experience than any other people in developing the water resources of carbonate aquifers. Interestingly, many of the smaller scale projects are carried out by local farmers and co-operatives, with little recourse to the advice of professional engineers and hydrologists, although even in large regional schemes, much local expertise and labour is involved (see for example Hegtkcar 1976). While recently some of the Chinese work on karst hydrology has become available in the west (Song 1981; Song et al 1983; Yuan 1981, ) much of the practical experience resulting from these local and small scale developments remains unpublished even in China. We were therefore very fortunate to be able to examine the engineering works associated with the Guanyan cave system, just south of Guilin, Guangxi Province, SE China, during a recent joint venture with the Institute of Karst Research, Ministry of Geology, Guilin. The Guanyan (Crown Cave) system is developed in a sequence of relatively pure, predominantly finegrained limestones and dolomites over 2600 m thick, and ranging from Devonian to Carboniferous in age (Yuan 1980). These are folded into thrust faulted, NW-SE-trending folds, but dips are generally less than 30{degrees}. The underlying impermeable shales, siltstones and sandstones form a mountainous terrain rising to 1400 m above sea-level east of the limestone, and provide the headwaters for streams feeding into the caves (Fig. ... This 250-word extract was created in the absence of an abstract

Breccia-hosted lead-zinc deposits in carbonate rocks, 1988, Sangster D. F.

The Geomorphology of the Jenolan Caves Area, 1988, Kiernan, Kevin

The Jenolan Caves occur in a small impounded fluviokarst developed in limestone of late Silurian age. This paper reviews present knowledge of the geomorphology of Jenolan. The surface and underground geomorphology has been strongly influenced by the lithology and structure of the limestone and the non-carbonate rocks that surround the karst. There is evidence in the present geomorphology of the inheritance of influences from palaeo landscapes. Abundant surficial and cave sediments reflect slope gradients and climatic conditions that have existed in the past. Despite the very limited size of the limestone outcrop there is a great variety in the karst, including many kilometres of underground passage and a range of cave morphologies and clastic and chemical sediments underground.

In the valleys of southeastern France, below karst massifs, river deposits with travertines show vertical sedimentary sequences always similar, with, from bottom to top: gravels, silts, chalks, travertines s.s. (stromatolitic encrustations with laminated facies), travertinous sand, silts. The study of flora and fauna fossilized by these formations shows a good correlation between the maximum of carbonate deposition (travertinous facies s.s.) and the optimum of vegetation development (forest). And finally, behind calcareous dams edified by travertine, paludal and lacustrine fields are environments developed trapping diversified sediments (clays, peats, silts,...). Then, dam and lake are forming a unit that we can call a 'travertine system'

The Upper Jurassic stratigraphy and the facies development of the Dinaric carbonate platform of Slovenia (northwest Yugoslavia) are compared with the Jura carbonate platform of southern Jura (southeast France). The similar facies development between the two platforms during the Kimmeridgian and the Tithonian, as well as a pronounced discontinuity in the same stratigraphical position (controlled by dasycladacean algae and/or ammonites), made it reasonable to correlate the two regions. This discontinuity is marked by a bauxite horizon and a karst breccia in south Slovenia (inner platform), and by a black-pebble conglomerate (inner platform) and a reef breccia (outer platform) in the southern Jura. These features are interpreted as type 1 sequence boundaries related to a global fall of sea level. In southern Jura, biostratigraphical elements situate the sequence boundary between the Eudoxus and the <> ( = Elegans) zones, most probably at the end of the Beckeri ( = Autissiodorensis) zone. Integrating this discontinuity into the eustatic sea level curve proposed by the Exxon group (version 3.1) is difficult because the only suitable sequence boundaries, SB 139 and SB 142, are respectively too young (younger than the <> zone) or too old (older than the Eudoxus zone). We therefore suggest to introduce a new sequence boundary within the upper part of the Beckeri zone which would correspond to a <> sequence boundary SB 140. The investigations further show that Clypeina jurassica FAVRE and Campbelliella striata (CAROZZI) BERNIER most likely appear in the Beckeri zone in the realm of the Jura carbonate platform. The same dasycladacean algae assemblage defines a cenozone identified as <> in Slovenia. It therefore seems possible to correlate the stratigraphic limit between <> and <> of the Dinaric carbonate platform with the beginning of the Beckeri zone

The lead-zinc ore deposits of the Siding-Gudan mineral subdistrict Guangxi are part of the large Nanling district of South China, and hosted in Devonian carbonate rocks. The ore bodies occur significantly along main faults and fault zones, and concentrate up to 300 meters above the Cambrian/Devonian unconformity. Connected with hydrothermal karst, size and volume of the ore bodies increase in proximity to this unconformity. Moving from the unaffected host rocks to the center of the ore bodies, four zones can be discriminated by the mineral assemblage (pyrite, sphalerite, galena) as well as by the degree of ordering, Ca/Mg, and Fe/Mn ratios of different dolomites. Homogenization temperatures range from 80-100-degrees-C (Presqu'ile dolomite) to 230-260-degrees-C (massive sphalerite). The sulfides reveal delta-S-34 = -20 to parts per thousand, and fluid inclusions display a salinity of 5-12 wt % equivalent NaCl. The diagenetic and hydrothermal history is similar to that of classic Mississippi Valley Type (MVT) sulfide mineral deposits as, for example, Pine Point in Canada. Mineralization and remobilization of the sulfides took place during a wide time span from late Paleozoic through Mesozoic. Both processes are considered as an interaction of saline basinal brines ascended from the adjoining dewatering trough, and magmatic-hydrothermal fluids of several magmatic-tectonic events

Stone forest aquifers are the most widely exploited sources for ground water in the vast south China karst belt. These aquifers occupy a thin epikarst zone that has been infilled with clastic sediments. The aquifers are characterized by large lateral permeabilities and small reservoir capacities owing to their thinness. The carbonate rocks which comprise the framework for the aquifers are usually buried under the karst plains and large karst depressions where development is desired. The stone forest aquifer exploration procedure must first locate saturated zones. Second, those parts of the saturated zone having the greatest dissolution porosity must be identified because the infilled dissolution voids contain the water. The best indicators of saturation include the combination of low topography and the presence of active karst features such as springs, karst windows (natural openings exposing the water table), and live surface streams. These elements are readily observed on intermediate scale (1:20,000) aerial photography. The depth and degree of carbonate dissolution porosity is a function of several geologic and hydrologic factors including carbonate rock type, carbonate purity, fracture density, specific discharge, age of the circulation system, etc. These variables cannot be measured directly because the carbonate rocks are usually buried under a thin mantle of clastic sediments. However, if it is recognized that the ground-water system has already exploited the most favorable geology and that dissolution is an ongoing process, a simple indirect method can be used to identify the areas having the greatest porosity. The presence of karst depressions and recent sinkholes are indicative of the most intensely karstified and hydraulically active parts of the epikarst zone. Mapping of these surface features from stereo aerial photography is a simple geomorphology exercise that can be used to directly identify the most favorable well sites. Current well construction practices in the south China karst belt involve both dug and drilled wells. Dug wells are preferred in many locations owing to both cost-effectiveness associated with cheap labor and lack of available drilling equipment. The dug wells look and function identically to karst windows and thus conform to timeless water use traditions in the region

Selected problems of karst hydrology and hydrogeology in carbonate rocks. [in Polish], 1993, Motyka Jacek, Pulidobosch Antonio, Pulina Marian

ROADWAY DESIGN IN KARST, 1993, Fischer Ja, Fischer Jj, Greene Rw,
To minimize costs in conventional roadway design, as much low or valley areas as possible are utilized. In many areas of the eastern United States, these valleys are filled with carbonate rocks. Excavation is used to minimize grades-this removes protective overburden or rock cover over cavities; fill also is used to minimize grades-this can increase loads on marginally stable soil arches or rock cavity roofs. Surface water runoff is directed toward low areas-the low areas are likely zones of weakness or solutioning, thereby increasing the potential for sinkhole development and providing an opportunity for groundwater contamination, and remediation usually consists of blindly filling rock cavities, thus either channeling the still-contaminated surface flows someplace else or perhaps eliminating useful ground water recharge conduits. The authors suggest that the key to proper design, construction, and remediation for roadways planned in karst is to understand the geologic and hydrogeologic setting of the route(s) or locale, perform true geotechnical engineering design, and remediate with an understanding of the overall engineering geologic, hydrogeologic, and environmental picture

Results 16 to 30 of 212
You probably didn't submit anything to search for