Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That level is 1. within a cave, a group of passages developed in the same horizontal plane [10]. 2. the altitudinal relation of a cave floor to an outside surface [10]. 3. the surface of water in a well or standing reservoir [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for groundwater flow (Keyword) returned 220 results for the whole karstbase:
Showing 16 to 30 of 220
Chemical hydrogeology in natural and contaminated environments, 1989, Back W, Baedecker Mj,
Chemical hydrogeology, including organic and inorganic aspects, has contributed to an increased understanding of groundwater flow systems, geologic processes, and stressed environments. Most of the basic principles of inorganic-chemical hydrogeology were first established by investigations of organic-free, regional-scale systems for which simplifying assumptions could be made. The problems of groundwater contamination are causing a shift of emphasis to microscale systems that are dominated by organic-chemical reactions and that are providing an impetus for the study of naturally occurring and manmade organic material. Along with the decrease in scale, physical and chemical heterogeneity become major controls.Current investigations and those selected from the literature demonstrate that heterogeneity increases in importance as the study site decreases from regional-scale to macroscale to microscale. Increased understanding of regional-scale flow systems is demonstrated by selection of investigations of carbonate and volcanic aquifers to show how application of present-day concepts and techniques can identify controlling chemical reactions and determine their rates; identify groundwater flow paths and determine flow velocity; and determine aquifer characteristics. The role of chemical hydrogeology in understanding geologic processes of macroscale systems is exemplified by selection of investigations in coastal aquifers. Phenomena associated with the mixing zone generated by encroaching sea water include an increase in heterogeneity of permeability, diagenesis of minerals, and formation of geomorphic features, such as caves, lagoons, and bays. Ore deposits of manganese and uranium, along with a simulation model of ore-forming fluids, demonstrate the influence of heterogeneity and of organic compounds on geochemical reactions associated with genesis of mineral deposits. In microscale environments, importance of heterogeneity and consequences of organic reactions in determining the distributions and concentrations cf. constituents are provided by several studies, including infiltration of sewage effluent and migration of creosote in coastal plain aquifers. These studies show that heterogeneity and the dominance of organically controlled reactions greatly increase the complexity of investigations

Lithologic Control of Shallow Karst Groundwater Flow on the Sinkhole Plain of Kentucky, 1990, Groves Ghristopher G. , Crawford Nicholas

Modeling of regional groundwater flow in fractured rock aquifers, PhD Thesis, 1990, Kraemer, S. R.

The regional movement of shallow groundwater in the fractured rock aquifer is examined through a conceptual-deterministic modeling approach. The computer program FRACNET represents the fracture zones as straight laminar flow conductors in connection to regional constant head boundaries within an impermeable rock matrix. Regional scale fracture zones are projected onto the horizontal plane, invoking the Dupuit-Forchheimer assumption for flow. The steady state flow solution for the two dimensional case is achieved by requiring nodal flow balances using a Gauss-Seidel iteration. Computer experiments based on statistically generated fracture networks demonstrate the emergence of preferred flow paths due to connectivity of fractures to sources or sinks of water, even in networks of uniformly distributed fractures of constant length and aperture. The implication is that discrete flow, often associated with the local scale, may maintain itself even at a regional scale. The distribution of uniform areal recharge is computed using the Analytic Element Method, and then coupled to the network flow solver to complete the regional water balance. The areal recharge weakens the development of preferential flow pathways. The possible replacement of a discrete fracture network by an equivalent porous medium is also investigated. A Mohr's circle analysis is presented to characterize the tensor relationship between the discharge vector and the piezometric gradient vector, even at scales below the representative elementary volume (REV). A consistent permeability tensor is sought in order to establish the REV scale and justify replacement of the discrete fracture network by an equivalent porous medium. Finally, hydrological factors influencing the chemical dissolution and initiation of conduits in carbonate (karst) terrain are examined. Based on hydrological considerations, and given the appropriate geochemical and hydrogeological conditions, the preferred flow paths are expected to develop with time into caves.

In the carbonate aquifers which underlie most karst terrains, groundwater flow is through a dendritic system of solution conduits. In such aquifers, termed shallow conduit-flow aquifers. the methods used to mode) granular and fracture aquifers are not generally applicable. Investigations were conducted in the Inner Bluegrass Karst Region of central Kentucky with the objective of developing methods of modeling shallow conduit-flow aquifers as well as obtaining quantitative information on a specific portion of the aquifer to assist in its management for water supply purposes. In the Inner Bluegrass Karst Region, groundwater basins are developed. in each of which there is an integrated system of solution conduits which conducts recharge to a major spring. One of the largest of these groundwater basins feeds Royal Spring, which serves as the principal water supply for the town of Georgetown. The basin extends over 15 km to the southeast and most of its flow is furnished by underground diversions of Cane Run, a surface stream with headwaters near the center of the City of Lexington. The principal objectives of the field investigation were to determine discharges at the spring and travel times to the spring from discrete recharge points within the basin, termed swallets. The spring is ungaged. and an attempt was made to obtain a continuous discharge record by the dilution of dye introduced at a swallet. Comparison of the dye-dilution discharge record with stage discharges at the spring revealed substantial discrepancies which are believed to be caused by as much as five-sixths of the low-flow discharge from the upper portion of the basin bypassing the spring. The dye-dilution method, therefore, provided significant insights into the geometry of the conduit system of the groundwater basin although it proved unsatisfactory as a method of determining discharges at the spring. Analysis of the travel times and stage discharges provided information on the conduit geometry by modeling the flow as open-channel flow in a rectangular channel. Flow in the system is rapid, ranging from 140 to 590 m h-1. Although the flow rate increases with discharge, the relationship is not simple owing to substantial increases in conduit cross-sectional area at higher discharges. Flow is turbulent and subcritical under all conditions. The most surprising result was the very low depth of flow calculated; less than 17 cm at even the highest discharge. Although this must be considered an 'equivalent' depth, it is believed to indicate that active flow in shallow conduit-flow aquifers is generally in a thin zone just beneath the water table

Karst hydrogeology of the Canadian Rocky Mountains, PhD Thesis, 1991, Worthington, Stephen Richard Hurst

An analysis of the discharge and hydrochemical variations of contrasting springs at Crowsnest Pass showed they were part of a vertical hierarchy in the aquifer, in which underflow and overflow components play a dominant role. It was found that karst springs at Crowsnest Pass and elsewhere show a range between two end members. Thermal springs have long, deep flow paths, with high sulphate concentrations, low discharge variance and low flow velocities. Overflow springs have local shallow flow paths, low sulphate, high discharge variance, and high flow velocities. Intermediate between these end members are underflow springs; in the Rocky Mountains these are mostly aggraded, and give the sustained winter flow and high sulphate concentrations found in major rivers. It was found that underflow or overflow behaviour is able to explain most of the contrasts found between karst springs in discharge and sulphate concentrations. Conversely, differences in bicarbonate concentration are principally due to the ratio of allogenic to autogenic recharge to the aquifer. Hydraulic analysis showed that gradients decrease in the downstream direction, and are typically 0.0001-0.05 at maximum discharges, that friction factors vary by a factor of $>$1000, and that most active conduits have closed-channel flow and are in dynamic equilibrium with sediment supply. The analysis of the hydrological data from Crowsnest Pass and elsewhere has led to the development of a new conceptual model for groundwater flow in karst, in which the Hagen-Poiseuille flow net conditions the aquifer for conduit development, and determines where the conduits will be. The model explains why most conduits are in dynamic equilibrium with sediment supply, why temperate karst springs are mostly vauclusian, what the mean time for speleogenesis is, how $>$98% of the solution of limestone is in the surficial zone, and why there are karstic hot springs in the Rocky Mountains and elsewhere. The model enables predictions to be made of sink to resurgence flow velocities, of conduit depth below the water table, of the ratio of beds to joints used by conduits, of the spacing between cave tiers, and of the depth of vauclusian springs. This new understanding of how karstic aquifers develop and function gives a powerful predictive ability to karst hydrogeology.

The hydrology of a small karst drainage basin in Jamaica, the Martha Brae River basin, was examined using stable isotopes. Variations in the isotopic composition of the groundwaters sampled and their positions relative to the local meteoric water line on a delta-D/delta-O-18 diagram permitted the identification of two distinct groundwater types. The isotopic data also provided evidence that the most productive portion of the aquifer is divided by a major fault, which impedes groundwater flow. Information regarding the mechanisms and elevation of recharge was inferred from the delta-D versus delta-O-18 relationships and differences in isotopic composition, respectively

The hydrogeology of the northeastern part of Mt Xishan has historically been interpreted in terms of a simple unconfined aquifer model. The groundwater required is characterized by (1) karst terrain, (2) multilayered unconfined groundwater flow developed in block mountains involving rapid hanging discharges and (3) deep confined groundwater with a carbon 14 age of 1000-2800 years and low tritium content. The flows are partly towards the southern part of Mt Xishan, partly east towards the porous aquifers of the Nitun Basin and partly discharging through the Lancun Spring system. The spatial structure of karst aquifers in block mountains is elucidated by an understanding of stratigraphic, structural, lithological, climatic and karst geomorphological evolution. The actual complex hydrogeological conditions in the Mt Xishan area considered are demonstrated by a comprehensive model proposed by the author. Such a model may also be applied in other karstic block mountains

Use of hydrologic, hydrochemical and isotopic data in identification of groundwater flow patterns in Lower Zamantı Basin (Eastern Taurids-Turkey), 1993, Bayari Celal Serdar, Gurer Ibrahim
In karst basins where hydraulic structures ARE designed to utilize the existing water potential, determination of the distinct groundwater flow patterns and the inter-relations among them bears great importance from the view point of the geotechnical safety of the structure. The combined use of hydrologic, hydrochemical and isotopic data enables us to identify different groundwater flow patterns prevailing in karst basins. Once the inter-relation among the groundwater flow patterns is established, the decision regarding the implementation of projects will be easier. Hydrologic investigations including analyses of the "stream yield" and "groundwater balance", produce invaluable information that can be used to locate the important karstic effluents along the basin. The study of the hydrochemistry of major karstic effluents reveals reliable information on the "depth" of underground circulation and the "recharge conditions" dominating within the karst system. Evaluation of environmental isotopic data introduces important details pertaining to the "mean recharge area elevations" and "turn-over times" of the karst waters and inter-relation among each other. Sometimes very closely located karstic outflows may have quite different circulation/recharge characteristics. This paper attempts to demonstrate the combined use of hydrologic, hydrochemical and isotopic techniques for the determination of the "deep-regional" and "shallow" groundwater circulation patterns existing in the Lower Zamanti Basin.

Three regolith-collapse sinkholes formed near the Dongola Unit School and the Pentecostal Church in the southern Illinois village of Dongola (Union County) during the spring of 1993. The sinkholes appeared over a three-month period that coincided with development of a new municipal well. The new well was drilled through clay-rich, valley-fill sediment into karstified limestone bedrock. The piezometric surface of the limestone aquifer is above land surface, indicating the presence of an upward hydraulic gradient in the valley and that the valley fill is acting as a confining unit. Pumping during development of the well lowered the piezometric surface of the limestone aquifer to an elevation below the base of the valley fill. It is hypothesized that drainage of water from the sediments, the resulting loss of hydrostatic pressure and buoyant force in overlying sediments, increased intergranular pressure, and the initiation of groundwater flow toward the well resulted in rapid sediment transport, subsurface erosion, and collapse of the valley-fill sediment. The sinkholes follow an approximately east west alignment, which is consistent with one of the two dominant alignments of passages of nearby joint-controlled caves. A constant electrode-separation resistivity survey of the school playground was conducted to locate areas that might contain incipient sinkholes. The survey revealed a positive resistivity anomaly trending N75E in the southern part of the study area. The anomaly is linear, between 5 and 10 m wide. and its trend either intersects or is immediately adjacent to the three sinkholes. The anomaly is interpreted to be a series of pumping-induced cavities in the valley-fill sediments that formed over a preexisting crevice in the karstified bedrock limestone

Tectonic Speleogenesis of Devils Hole, Nevada, and Implications for Hydrogeology and the Development of Long, Continuous Paleoenvironmental Records, 1994, Riggs Alan C. , Carr W. J. , Kolesar Peter T. , Hoffman Ray J. ,
Devils Hole, in southern Nevada, is a surface collapse into a deep, planar, steeply dipping fault-controlled fissure in Cambrian limestone and dolostone. The collapse intersects the water table about 15 m below land surface and the fissure extends at least 130 m deeper. Below water, most of the fissure is lined with a >30-cm-thick layer of dense maxillary calcite that precipitated continuously from groundwater for >500,000 yr. The thick mammillary calcite coat implies a long history of calcite-supersaturated groundwaters, which, combined with the absence of dissolutional morphologies, suggests that Devils Hole was not formed by karst processes. Devils Hole is located in a region of active extension; its tectonic origin is shown by evidence of spreading of its planar opening along a fault and by the orientation of its opening and others nearby, perpendicular to the northwest-southeast minimum principal stress direction of the region. Most Quaternary tectonic activity in the area, including seismicity and Quaternary faults and fractures, occurs on or parallel to northeast-striking structures. The hydrogeologic implications of this primarily structural origin are that fracture networks and caves opened by extensional tectonism can act as groundwater flowpaths functionally similar to those developed by karst processes and that, during active extension, transmissivity can be maintained despite infilling by mineral precipitation. Such extensional environments can provide conditions favorable for accumulation of deposits preserving long, continuous paleoenvironmental records. The precipitates in Devils Hole store chronologies of flow system water-level fluctuations, hydrochemistry, a half-million-yr proxy paleoclimate record, evidence of Devils Hole's tectonic origin, and probably atmospheric circulation

Coastal karst aquifers have highly variable distributions of porosity and permeability. The ability to assess the volume of aquifer occupied by freshwater in coastal karst aquifers is limited by both the lack of understanding of the effect that regions of cavernous porosity and permeability have on the configuration of the saline-freshwater mixing zone and by the limited knowledge of the location of the cavernous regions. A dual-density ground-water flow and solute transport model was used to explore the effect that the depth, lateral extent, and proximity to the coast of zones of high porosity and permeability has on the configuration of the saline-freshwater mixing zone. These aquifer heterogeneities tend to shift the mixing zone upward relative to the position it would have in aquifers with homogeneous porosity and permeability, Zones of high porosity and permeability located at positions shallow in the aquifer or nearer to the coast had the greatest effect. In fact, for the conditions modeled, position was more important in modifying the configuration of the mixing zone than was changing the ratio of the intrinsic permeability of the cavernous zone to the aquifer matrix from 100 to 1000. Modeling results show that ground-water flow is concentrated into the zones of high porosity and permeability and that flow configuration results in steep salinity gradients with depth, Field observations of the location of the halocline and of step changes in ground-water composition coincident with regions of cavernous porosity in coastal karst aquifers corroborate the model results, In a coastal setting with saline water intruding into an aquifer, the effect of cavernous porosity and associated high permeability is to decrease the volume of aquifer in which freshwater occurs by a greater degree than would occur in an aquifer with homogeneous porosity and permeability

Remote sensing of tectonic fabric controlling groundwater flow in Dinaric karst., 1995, Kresic N.

Geological and hydrogeological remote sensing techniques can be applied very favorably to Dinaric karst in the Balkans, a well-known reference area for studies of karst phenomena. The elements that make karst terrain of the Dinarides suitable for remote sensing are geomorphologic characteristics, in particular the specific surface drainage and karst forms, the varying vegetation that most often reflects the existence of different geologic formations on the surface, and distinct tectonic features. Some of the world's largest springs, ponors (sinks), and dolines are controlled by fractures visible on both satellite images and aerial photographs. Lineaments represent fault zones, systems of close faults with similar strike, or large individual faults which all are young or show recently renewed activity. Their neotectonic character and major importance for karst groundwater flow are confirmed by numerous field investigations including water tracing, geophysical research, and drilling

Geochemistry of Regional Groundwater Flow in the Aladag Karstic Aquifer, Eastern Taurids-Turkey: Effect of Flow Conditions, 1995, Bayari C. Serdar, Kurttas Turker
The geochemistry of regional groundwater flow along the Aladag karstic aquifer indicates a remarkable correlation between the hydraulic and geochemical conditions. The Aladag. karstic aquifer, in between the recharge area and the regional erosion base, comprises unconfined and confined sections. A transition zone along which semi-confined flow conditions dominate also occurs between these sections. The parts of the aquifer in which unconfined and confined flow conditions dominate seem to be analogous of geochemically open and closed systems of carbonate dissolution, respectively. The varition of physical and chemical properties of the karstic effluents implies that although the carbonate dissolution is perpetual along the flow system, dissolution rates decrease where confined flow conditions start to prevail. However, gypsum dissolution along the regional flow path seems to be independent of hydraulic conditions.

A simulation model developed to explore patterns of fracture enlargement within incipient limestone karst aquifers has been extended to turbulent flow. In contrast to the highly selective passage enlargement that occurs early in cave network development under laminar flow, the transition to turbulent flow results in more general passage enlargement, leading to maze networks when initial fractures are large and hydraulic gradients are high. These results support previously published hypotheses for the development of maze patterns, including formation within structural settings that have created initially large fractures or within flow systems periodically inundated by flooding. Maze development is also favored under turbulent flow when passages are entirely water filled, and where the groundwater flow system is long-lived. By contrast, branched patterns are most common when passages become free-surface subterranean streams, because depression of the piezometric surface along main passages, downcutting along main passages, and possible infilling with sediment of side passages limit the sharing of discharge among interconnected fractures or bedding planes that promote maze development

Results 16 to 30 of 220
You probably didn't submit anything to search for