Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That karst aquifer is see aquifer, karst.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for shallow-water (Keyword) returned 24 results for the whole karstbase:
Showing 16 to 24 of 24
Paleocollapse structures as geological record for reconstruction of past karst processes during the upper miocene of Mallorca Island, 2004, Robledo Ardila P. A. , Durn J. J. , Pomar L.
Paleocollapse structures and collapse breccias are one of the major features for paleokarst analysis and paleoclimate record. These are affecting the Llucmajor and Santany carbonate platforms. These platforms, of southern and eastern Mallorca respectively, are a good example of progradation reef platform in the western Mediterranean. The Santany platform is constituted of two sedimentary units, both affected by paleocollapse structures: (1) The Reef Complex attributed to the upper Tortonian-lower Messinian; (2) Santany Limestone attributed to the Messinian. There are abundant paleocollapse outcropping in the Reef Complex and Santany Limestone units. These structures have been produced by roof collapse of caverns developed in the underlying reefal complex. According to the genetic model, the origin of same paleocollapse structures may be related to early diagenetic processes controlled by high-frequency sea-level fluctuations. During the lowstands of sea level, fresh water flow or mixing zone might have created a cave system near the water table by dissolution of aragonite in the reef front facies and coral patches existing in the lagoonal beds. During subsequent rise and highstands of sea level, inner-shelf beds overlaid the previously karstified reef-core and outer-lagoonal beds. Increase of loading by subsequent accretion of the shallow-water carbonate might have produced paleocollapse structures by gravitational collapse of cave roof. Morphometric and structural classification of paleocollapse is based on geometric and structural criteria according to the type of deformed strata and strata dip. Paleocollapse structures can be classified according to geometric section, size of the paleocave and lithification degree of the host rock when collapsed. Breccias are classified as crackle, mosaic and chaotic types. In same paleocollapse the type of breccias present a vertical and lateral gradation, from crackle in the upper part, to chaotic in the lower part of the paleocollapse. Chaotic breccias grade from matrix-free, clasts-supported breccias to matrix-supported breccias. Relationship with high frequency of sea-level fluctuation, facies architecture, classification features and products permit to enhance a general paleoclimatic framework.

Concepts and models of dolomitization: a critical reappraisal, 2004, Machel Hans G. ,
Despite intensive research over more than 200 years, the origin of dolomite, the mineral and the rock, remains subject to considerable controversy. This is partly because some of the chemical and/or hydrological conditions of dolomite formation are poorly understood, and because petrographic and geochemical data commonly permit more than one genetic interpretation. This paper is a summary and critical appraisal of the state of the art in dolomite research, highlighting its major advances and controversies, especially over the last 20-25 years. The thermodynamic conditions of dolomite formation have been known quite well since the 1970s, and the latest experimental studies essentially confirm earlier results. The kinetics of dolomite formation are still relatively poorly understood, however. The role of sulphate as an inhibitor to dolomite formation has been overrated. Sulphate appears to be an inhibitor only in relatively low-sulphate aqueous solutions, and probably only indirectly. In sulphate-rich solutions it may actually promote dolomite formation. Mass-balance calculations show that large water/rock ratios are required for extensive dolomitization and the formation of massive dolostones. This constraint necessitates advection, which is why all models for the genesis of massive dolostones are essentially hydrological models. The exceptions are environments where carbonate muds or limestones can be dolomitized via diffusion of magnesium from seawater rather than by advection. Replacement of shallow-water limestones, the most common form of dolomitization, results in a series of distinctive textures that form in a sequential manner with progressive degrees of dolomitization, i.e. matrix-selective replacement, overdolomitization, formation of vugs and moulds, emplacement of up to 20 vol% calcium sulphate in the case of seawater dolomitization, formation of two dolomite populations, and -- in the case of advanced burial -- formation of saddle dolomite. In addition, dolomite dissolution, including karstification, is to be expected in cases of influx of formation waters that are dilute, acidic, or both. Many dolostones, especially at greater depths, have higher porosities than limestones, and this may be the result of several processes, i.e. mole-per-mole replacement, dissolution of unreplaced calcite as part of the dolomitization process, dissolution of dolomite due to acidification of the pore waters, fluid mixing (mischungskorrosion), and thermochemical sulphate reduction. There also are several processes that destroy porosity, most commonly dolomite and calcium sulphate cementation. These processes vary in importance from place to place. For this reason, generalizations about the porosity and permeability development of dolostones are difficult, and these parameters have to be investigated on a case-by-case basis. A wide range of geochemical methods may be used to characterize dolomites and dolostones, and to decipher their origin. The most widely used methods are the analysis and interpretation of stable isotopes (O, C), Sr isotopes, trace elements, and fluid inclusions. Under favourable circumstances some of these parameters can be used to determine the direction of fluid flow during dolomitization. The extent of recrystallization in dolomites and dolostones is much disputed, yet extremely important for geochemical interpretations. Dolomites that originally form very close to the surface and from evaporitic brines tend to recrystallize with time and during burial. Those dolomites that originally form at several hundred to a few thousand metres depth commonly show little or no evidence of recrystallization. Traditionally, dolomitization models in near-surface and shallow diagenetic settings are defined and/or based on water chemistry, but on hydrology in burial diagenetic settings. In this paper, however, the various dolomite models are placed into appropriate diagenetic settings. Penecontemporaneous dolomites form almost syndepositionally as a normal consequence of the geochemical conditions prevailing in the environment of deposition. There are many such settings, and most commonly they form only a few per cent of microcrystalline dolomite(s). Many, if not most, penecontemporaneous dolomites appear to have formed through the mediation of microbes. Virtually all volumetrically large, replacive dolostone bodies are post-depositional and formed during some degree of burial. The viability of the many models for dolomitization in such settings is variable. Massive dolomitization by freshwater-seawater mixing is a myth. Mixing zones tend to form caves without or, at best, with very small amounts of dolomite. The role of coastal mixing zones with respect to dolomitization may be that of a hydrological pump for seawater dolomitization. Reflux dolomitization, most commonly by mesohaline brines that originated from seawater evaporation, is capable of pervasively dolomitizing entire carbonate platforms. However, the extent of dolomitization varies strongly with the extent and duration of evaporation and flooding, and with the subsurface permeability distribution. Complete dolomitization of carbonate platforms appears possible only under favourable circumstances. Similarly, thermal convection in open half-cells (Kohout convection), most commonly by seawater or slightly modified seawater, can form massive dolostones under favourable circumstances, whereas thermal convection in closed cells cannot. Compaction flow cannot form massive dolostones, unless it is funnelled, which may be more common than generally recognized. Neither topography driven flow nor tectonically induced ( squeegee-type') flow is likely to form massive dolostones, except under unusual circumstances. Hydrothermal dolomitization may occur in a variety of subsurface diagenetic settings, but has been significantly overrated. It commonly forms massive dolostones that are localized around faults, but regional or basin-wide dolomitization is not hydrothermal. The regionally extensive dolostones of the Bahamas (Cenozoic), western Canada and Ireland (Palaeozoic), and Israel (Mesozoic) probably formed from seawater that was pumped' through these sequences by thermal convection, reflux, funnelled compaction, or a combination thereof. For such platform settings flushed with seawater, geochemical data and numerical modelling suggest that most dolomites form(ed) at temperatures around 50-80 {degrees}C commensurate with depths of 500 to a maximum of 2000 m. The resulting dolostones can be classified both as seawater dolomites and as burial dolomites. This ambiguity is a consequence of the historical evolution of dolomite research

Sequence Biostratigraphy of Prograding Clinoforms, Northern Carnarvon Basin, Western Australia: A Proxy for Variations in Oligocene to Pliocene Global Sea Level?, 2004, Moss Graham D. , Cathro Donna L. , Austin James A. Jr. ,
Sequence biostratigraphic analyses from five industry wells in the Northern Carnarvon Basin (NCB), Western Australia, are tied to seismic stratigraphic interpretations from a set of 3D and 2D seismic data. Distribution patterns of [~]286 benthic and 73 planktonic foraminiferal taxa in sidewall cores and ditch cuttings from Eocene to Pliocene intervals are documented and supplemented with observations of other fossil groups (e.g., fragments of ostracodes, bryozoans, corals, and mollusks) and lithological components such as calcite cement and quartz sand. Preservation of foraminiferal assemblages is extremely variable in latest Eocene to Pliocene stratigraphy, depending upon the location of wells and the interval investigated. Nonetheless, consistent, detectable faunal signals correlate between wells and with prominent seismic horizons and sequences. The late Oligocene to middle Miocene is characterized by deeper-water benthic assemblages dominated by infaunal taxa and a high planktonic abundance. Stratigraphic events in the middle Miocene, including turnover in benthic foraminifera, are interpreted to record a regional flooding event (equivalent to cycle Tejas B (TB) 2.3) at the beginning of the mid-Miocene climatic optimum ([~]16-14.5 Ma). Following this event, seismically defined geomorphic features include karstification on the shelf and incision on the clinoform front. All wells show a major transition to shallow-water, warm conditions on the shelf in the middle and late Miocene, with benthic assemblages dominated by larger foraminifera. This transition appears higher in more-basinward wells and appears to be a result of progradation. Geomorphic features in the late middle Miocene ([~]12 Ma) identified from 3D seismic analyses show an intensification of earlier gully formation, resulting in the development of submarine canyons. Detailed analyses of faunal patterns also provide evidence of higher-frequency sea-level fluctuations (0.5-3 Ma), not detected in the seismic stratigraphic patterns

Evolution of the Adriatic carbonate platform: Palaeogeography, main events and depositional dynamics, 2005, Vlahovic I. , Tisljar J. , Velic I. , Maticec D. ,
The Adriatic Carbonate Platform (AdCP) is one of the largest Mesozoic carbonate platforms of the Perimediterranean region. Its deposits comprise a major part of the entire carbonate succession of the Croatian Karst (External or Outer) Dinarides, which is very thick (in places more than 8000 m), and ranges in age from the Middle Permian (or even Upper Carboniferous) to the Eocene. However, only deposits ranging from the top of the Lower Jurassic (Toarcian) to the top of the Cretaceous can be attributed to the AdCP (defined as an isolated palaeogeographical entity). Although the entire carbonate succession of the Karst Dinarides was deposited within carbonate platform environments, there were different types of carbonate platforms located in different palaeogeographical settings. Carboniferous to Middle Triassic mixed siliciclastic-carbonate deposits were accumulated along the Gondwanian margin, on a spacious epeiric carbonate platform. After tectonic activity, culminating by regional Middle Triassic volcanism recorded throughout Adria (the African promontory), a huge isolated carbonate Southern Tethyan Megaplatform (abbreviated as STM) was formed, with the area of the future AdCP located in its inner part. Tectonic disintegration of the Megaplatform during the middle to late Early Jurassic resulted in the establishment of several carbonate platforms (including the Adriatic, Apenninic and Apulian) separated by newly drowned deeper marine areas (including the Adriatic Basin as a connection between the Ionian and Belluno basins, Lagonero, Basin, and the area of the Slovenian and Bosnian troughs). The AdCP was characterised by predominantly shallow-marine deposition, although short or long periods of emergence were numerous, as a consequence of the interaction of synsedimentary tectonics and eustatic changes. Also, several events of temporary platform drowning were recorded, especially in the Late Cretaceous, when synsedimentary tectonics became stronger, leading up to the final disintegration of the AdCP. The thickness of deposits formed during the 125 My of the AdCP's existence is variable (between 3500 and 5000 m). The end of AdCP deposition was marked by regional emergence between the Cretaceous and the Palaeogene. Deposition during the Palaeogene was mainly controlled by intense synsedimentary tectonic deformation of the former platform area-some carbonates (mostly Eocene in age) were deposited on irregular ramp type carbonate platforms surrounding newly formed flysch basins, and the final uplift of the Dinarides reached its maximum in the Oligocene/Miocene. The Adriatic Carbonate Platform represents a part (although a relatively large and well-preserved one) of the broader shallow-water carbonate platform that extended from NE Italy to Turkey (although its continuity is somewhat debatable in the area near Albanian/Greece boundary). This large carbonate body, which was deformed mostly in the Cenozoic (including a significant reduction of its width), needs a specific name, and the Central Mediterranean Carbonate Platform is proposed (abbreviated to CMCP), although the local names (such as AdCP for its NW part) should be kept to enable easier communication, and to facilitate description of local differences in platform evolution,

Variation of palaeostress patterns along the Oriente transform wrench corridor, Cuba: significance for Neogene-Quaternary tectonics of the Caribbean realm, 2005, Rojasagramonte Y. , Neubauer F. , Handler R. , Garciadelgado D. E. , Friedl G. , Gadodamas R. ,
In this study, we address the late Miocene to Recent tectonic evolution of the North Caribbean (Oriente) Transform Wrench Corridor in the southern Sierra Maestra mountain range, SE Cuba. The region has been affected by historical earthquakes and shows many features of brittle deformation in late Miocene to Pleistocene reef and other shallow water deposits as well as in pre-Neogene, late Cretaceous to Eocene basement rocks. These late Miocene to Quaternary rocks are faulted, fractured, and contain calcite- and karst-filled extension gashes. Type and orientation of the principal normal palaeostress vary along strike in accordance with observations of large-scale submarine structures at the south-eastern Cuban margin. Initial N-S extension is correlated with a transtensional regime associated with the fault, later reactivated by sinistral and/or dextral shear, mainly along E-W-oriented strike-slip faults. Sinistral shear predominated and recorded similar kinematics as historical earthquakes in the Santiago region. We correlate palaeostress changes with the kinematic evolution along the boundary between the North American and Caribbean plates. Three different tectonic regimes were distinguished for the Oriente transform wrench corridor (OTWC): compression from late Eocene-Oligocene, transtension from late Oligocene to Miocene (?) (D-1), and transpression from Pliocene to Present (D-2-D-4), when this fault became a transform system. Furthermore, present-day structures vary along strike of the Oriente transform wrench corridor (OTWC) on the south-eastern Cuban coast, with dominantly transpressional/compressional and strike-slip structures in the east and transtension in the west. The focal mechanisms of historical earthquakes are in agreement with the dominant ENE-WSW transpressional structures found on land. (C) 2004 Elsevier B.V. All rights reserved

Growth, Demise, and Dolomitization of Miocene Carbonate Platforms on the Marion Plateau, Offshore NE Australia, 2006, Ehrenberg Sn, Mcarthur Jm, Thirlwall Mf,
Strontium-isotope stratigraphy has been used to examine the timing of depositional events and dolomitization in two Miocene carbonate platforms cored by Ocean Drilling Program (ODP) Leg 194, just seaward of the Great Barrier Reef. The results provide firm constraints for correlating surfaces and depositional stages between the two platforms and thereby relating seismic sequences previously defined in the off-platform sediments to the lithostratigraphic units described from cores in the seismically transparent platform-top sites. Oyster-bearing beds at the base of both platform successions yield early Oligocene ages (29-31 Ma), thus dating initial transgression of the Marion Plateau's volcanic basement. There followed a period of slow accumulation of shallow-water grainstones rich in quartz and phosphate grains in late Oligocene time (29-23 Ma; seismic Megasequence A). The main growth of the carbonate platforms took place in early to late Miocene time (23-7 Ma), comprising five depositional sequences. The first four of these (seismic Megasequence B) are common to both platforms and terminated with a possible karst surface at 10.7 Ma. Different sedimentologic expression of this megasequence in the two platforms reflects contrasting progradational versus aggradational geometries in the locations studied. The final growth stage (seismic Megasequence C) occurred only in the southern platform and terminated at 6.9 Ma. Both platform-demise events (10.7 and 6.9 Ma) approximately coincide with falls in global sea level combined with longer-term trends of decreasing water temperature. Sr-isotope ages of dolostones increase with depositional age, and older dolostones in the southern platform have more coarsely crystalline and fabric-destructive textures than overlying younger dolostones. These relationships are consistent with dolomitization by normal seawater shortly after deposition and overprinting of multiple times of dolomite recrystallization and cementation in the deeper strata

Relative Sea-Level Changes Recorded on an Isolated Carbonate Platform: Tithonian to Cenomanian Succession, Southern Croatia, 2006, Husinec Antun, Jelaska Vladimir,
Superb sections of Tithonian to Cenomanian carbonates of the Adriatic (Dinaric) platform are exposed on the islands of southern Croatia. A succession approximately 1,800 m thick consists exclusively of shallow-water marine carbonates (limestone, dolomitized limestone, dolomite, and intraformational breccia), formed in a protected and tectonically stable part of the platform interior. Several phases of exposure and incipient drowning are recorded in the platform interior. Four are crucial for understanding the Late Jurassic to mid-Cretaceous evolution of the wider peri-Adriatic area: (1) latest Jurassic-earliest Cretaceous sea-level fall, (2) Aptian drowning, followed by (3) Late Aptian platform exposure, and (4) Late Albian-Early Cenomanian sea-level fall. Deciphering these complex events from the vertical and lateral facies distribution has led to an evaluation of facies dynamics and construction of a relative sea-level curve for the study area. This curve shows that long-term transgression during the Early Tithonian, Hauterivian, Early Aptian, and Early Albian, resulted in generally thicker beds deposited in subtidal environments of lagoons or shoals. Regression was characterized by shallowing-upward peritidal parasequences, with well-developed tidal-flat laminites commonly capped by emersion breccia and/or residual clay sheets (Early Berriasian, Barremian, Late Aptian, Late Albian). The southern part of the Dinarides was tectonically quiet during the Tithonian through Aptian; sea-level oscillations appear to have been the primary control on facies stacking. Some correlation exists between local sea-level fluctuations and the published global eustasy charts for the Tithonian through Aptian. A significant departure is recognized at the Albian-Cenomanian transition, suggesting that it was influenced by tectonics associated with the disintegration of the Adriatic (Dinaric) platform

U-series dating and isotope geochemical study of the Gellrt Hill (Budapest) travertine, 2009, Kele S. , Scheuer G. , Demny A. , Shen Ch. C. , Chiang H. W.

Travertine is quite a common formation in the area of Budapest (Hungary) indicating strong hydrothermal activity during the Pliocene and Quaternary. It covers former terraces of the Danube River and older geomorphologic horizons; thus, it is an important archive to date fluvial terraces and tectonic movements. Despite numerous investigations performed on these deposits, only few radiometric data are available so far and the absence of the exact timing information hindered paleoclimatic interpretation. The area of Gellért Hill consists mainly of Upper Triassic dolomite, but Quaternary travertine can also be found. In this study a detailed petrographic and stable isotope geochemical study of four travertine sites (1. Ifjúsági Park; 2. Számadó u. (Street); 3. Kelenhegyi u. (Street); 4. Somlói u. (Street)) of the Gellért Hill area is presented, along with analyses on the recent carbonate deposits of Gellért Hill and Sárosfürdõ. The travertine of Ifjúsági Park and Számadó u. are spring cone deposits, while the travertine of the Kelenhegyi u. represents a shallow-water depositional environment. based on the paleontological studies of Jánossy (in Scheuer and Schweitzer, 1988) the Gellért Hill travertine was thought to have been formed during the Lower Pleistocene; however, no radiometric age dating had been performed on these deposits prior our study. Our U/Th analyses yielded ages of 250±44 ky for the Ifjúsági Park travertine (220 m asl) and 180±49 ky for the Számadó u. travertine (195 m asl). These new U/Th ages are in contradiction with the previously assumed Lower Pleistocene age, implying gradual relative decrease in the paleokarst water-level and proving that the elevation of the individual travertine deposits not necessarily show their relative age. The uplift rates of Gellért Hill calculated from the U/Th age data and elevation of travertine occurrences range between 0.47 and 0.52 mm/yr, which is significantly higher than the uplift rates calculated for the Rózsadomb area (0.20 0.25 mm/yr; Kele et al., submitted). The difference in the incision rates between the individual sub-areas suggests that selective uplift was characteristic for the Buda Hills during the Middle Pleistocene; thus, up-scaling reconstruction of paleokarst waterlevel for the whole area from a given locality is not possible. Oxygen isotope analyses of recent carbonate deposits of Gellért Hill, Sárosfürdõ and Rudas Spa revealed that these calcites precipitated under non-equilibrium conditions, and the measured calcitewater oxygen isotope fractionation show the same positive shift relative to "equilibrium values" as was observed in the case of the recently-forming Egerszalók travertine (Kele et al. 2008). Assuming that the water of the paleo-springs of Gellért Hill derived from precipitation infiltrated during interstadial periods of the Pleistocene and considering non-equilibrium deposition (i.e. using the empirical calcite-water oxygen isotope fractionation of Kele et al. 2008), their calculated paleotemperature could range between 22 (±4) °C and 49 (±6) °C. based on the 18Otravertine differences the Ifjúsági Park and the Számadó u. spring cone type travertine was deposited from the highest temperature water, while from the lowest temperature water the travertine of Kelenhegyi u. was formed.

Giant pockmarks in a carbonate platform (Maldives, Indian Ocean), 2011, Betzler C. , Lindhorst S. , Hubscher C. , Ludmann T. , Furstenau J. , Reijmer J.

Circular structures and depressions in carbonate platforms are known to represent karst chimneys or sinkholes which form as a response to rock solution. This formation mechanism is plausible for shallow-water carbonates which lie in the reach of meteoric diagenesis or fresh-water lenses. Circular structures which occur in deeper waters, however, need an alternative interpretation. Such an example of sea-floor depressions in more than 300. m deep waters occurs in the Inner Sea of the Maldives carbonate platform in the Indian Ocean. The structures were mapped with multibeam and Parasound, multi-channel seismics were used to link the depressions with structures at depth. The circular depressions have diameters of up to 3000. m and depths of up to 180. m. The craters are interpreted as pockmarks formed through the venting of gas and fluids. Gas and fluid lenses below the pockmarks are reflected by bright spots in the seismic sections as well as a reduction of the instantaneous frequency. These areas at depth are linked to chimneys connected to faults and drowned Oligocene carbonate banks. A model is presented that relates the different forms and sizes of the structures to distinct development stages of sea floor deformation to one process. Early stages of gas and fluid migration into the shallow part of the sedimentary succession induce formation of dome-shaped bodies. Initial gas and fluid escape to the sea floor is reflected by the formation of sand volcanoes and aligned small pockmarks. Active pockmarks are the deepest, and have the shape of truncated cones in cross section. Mature pockmarks are characterized by erosion of the flanks of the structure by bottom currents. Late stage pockmarks are bowl-shaped in cross section, and are to different degrees filled by drift sediments. Packages of strata revealing high reflection amplitudes and high interval velocities interpreted as microbially-mediated carbonate precipitates underlie some of the pockmarks. The pockmarks in the Maldives show that circular structures other than solution-related features can be abundant in carbonate platform deposits and that such structures may be more abundant in the geological record of carbonate platforms as previously thought. Pockmarks in the Maldives indicate that the archipelago is an example of a hydrocarbon system which consists of an isolated oceanic carbonate platform overlying a volcanic basement and lacustrine source rocks.

Results 16 to 24 of 24
You probably didn't submit anything to search for