Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That bathybenthic is of the bottom of the truly deep areas of the sea, where the "rain" of organic material produces a deposit of food [23].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for fossil (Keyword) returned 243 results for the whole karstbase:
Showing 16 to 30 of 243
On the knowledge of Mammal fauna of the Banat Caves (Romania)., 1967, Botosaneanu Lazare, Negrea Alexandrina, Negrea Stefan
The authors assembled from about 70 caves a rich collection of osteological material and specimens of living or fossil mammals. A list of the caves is given with an enumeration of the identiied species for each cave. Under each species the caves which supplied the material are listed. This is followed by an inventory of the osteological material and by observations on the living animals (especially bats). Fifty-three mammal species (fossil and living) were accurately determined (14 carnivores, 6 artiodactyls, 1 lagomorph, 10 rodents, 3 insectivores, and 19 bats).

Hydrology of carbonate rock terranes -- A review , : With special reference to the United States, 1969, Stringfield V. T. , Legrand H. E. ,
Limestone and other carbonate rocks are characterized by many unusual features and extreme conditions, either involving the hydrologic system within them or wrought by hydrologic conditions on them or through them. Perhaps there could be little agreement as to what is typical or average for the many features of carbonate rocks, as indicated by the following conditions: bare rock and thin soils are common, but so are thick soils; very highly permeable limestones are common, but so are poorly permeable ones; and rugged karst topographic features with underlying solution caverns are common, but so are flat, nearly featureless topographic conditions. Some conditions of carbonate terranes are suitable to man's needs and interests, such as the use of some permeable aquifers for water supply and the exploitation of caves for tourist attractions. On the other hand, many problems may exist, including: permeability too low for adequate water supply or so high that the aquifer retains too little water for use during periods of fair weather, soils too thin for growing of crops and for adequate filtration of wastes near the ground surface, instability of the ground for buildings and foundations in sinkhole areas, and unusually rugged topography. Some of the many variable conditions are readily observable, but others can be determined only by careful geologic and hydrologic studies.The need for knowing the specific geologic and hydrologic conditions at various places in limestone terranes, as well as the variations in hydrologic conditions with changing conditions and time, has resulted in many published reports on local areas and on special topical problems of limestone hydrology. Many of these reports have been used to advantage by the present writers in preparing this paper.The concept that secondary permeability is developed by circulation of water through openings with the accompanying enlargement of these openings by solution is now universally accepted in limestone terranes. Emphasis is placed on the hydrogeologic framework, or structural setting, in relation to the ease or difficulty of water to move from a source of recharge, through a part of the limestone, to a discharge area. Parts of the limestone favored by circulating ground water tend to develop solution openings, commonly in the upper part of the zone of saturation; as base level is lowered (sea level or perennial stream level), the related water table lowers in the limestone leaving air-filled caverns above the present zone of saturation in sinkhole areas. Reconstruction of the geologic and hydrologic history of a limestone area aids in determining the extent of development and the positions of fossil and present permeability. References are made to the hydrology of many limestone regions, especially those of the United States

The Clastic Sediments of Douglas Cave, Stuart Town, New South Wales, 1969, Frank, R.

Douglas Cave is on the western slopes of central New South Wales about five miles south-west of Stuart Town. The cave was first discovered in 1896 by R. J. Wilson (Leigh, 1897). At the time of discovery, the accumulation of fossil bone in the Bone Room was noted and shortly afterwards some bone was collected by W. S. Leigh. Thylacinus spelaeus, Dasyurus sp. and Macropus sp. were included in the collection (Dun, 1897). The cave was not named when it was discovered, though Trickett does refer to it as "the Stuart Town Caves" in a later report (Trickett, 1898, p. 205). It will be referred to hereafter as the Douglas Cave in honour of the present owner.


Rezente und fossile Hhlenfaunen - Eine vergleichende Betrachtung., 1971, Ehrenberg, K.

The Clastic Sediments of the Wellington Caves, New South Wales, 1971, Frank, R.

The Wellington Caves are about 8 km south of the town of Wellington, New South Wales. They were discovered in the 1820s and their long and varied history as a vertebrate palaeontological site began about 1830. Most of the early fossil collections were made by the explorer and surveyor-general, Major T.L. Mitchell, from an upper stratigraphic unit exposed in Mitchell's Cave and Cathedral Cave. Such venerable palaeontologists as Cuvier, Pentland, Jameson and Owen examined the material. Phosphate mining operations in the early 1900s exposed additional sedimentary sequences and most of the later vertebrate collections have come from these mines. A history of the discovery and exploration of the caves, as well as of the more important palaeontological aspects, is given by Lane and Richards (1963). A number of theories on the origin of the caves and especially on the depositional environment of the bone-bearing sediments, has been offered and some of these are summarised by Lane and Richards (1963). Most of these were conceived before 1900, none of them are detailed and they are generally speculations presented as minor portions of other articles dealing with a broader subject.


Rezente und fossile Hhlenfaunen - Eine vergleichende Betrachtung, 1971, Ehrenberg, K.

Eine fossile Hhlenfauna aus dem Steinbruch Hollitzer bei Bad Deutsch-Altenburg (Niedersterreich)., 1972, Rabeder, G.

Chronology of the Black Sea over the last 25,000 years, 1972, Degens Et, Ross Da,
Deep-water sediments of the Black Sea deposited during Late Pleistocene and Holocene time are distinguished by three sedimentary units: (1) a microlaminated coccolith ooze mainly consisting of Emiliania huxleyi; (2) a sapropel; and (3) a banded lutite. The base of the first unit lies at 3,000 years B.P., that of the second at 7,000 years B.P., and that of the third at least at about 25,000 years B.P. Fossils and geochemical criteria are used to decipher the environmental events of this time period. Beginning with the base of the section dated at about 25,000 years B.P. we witness the final stage of metamorphosis from anoxic marine to oxic freshwater conditions. By the time this stage ended, about 22,000 years B.P., the Black Sea had become a truly freshwater habitat. The lake phase lasted about 12,000 to 13,000 years. Sedimentation rates were in the order of 1 m/103 years, but began to decrease as sea level rose during the last 5,000 years of this phase (9,000-15,000 years B.P.). Starting at about 9,000 years B.P. and continuing to 7,000 years B.P., Mediterranean waters occasionally spilled over the Bosporus as a consequence of ice retreat and sea level rise. This marked the beginning of a gradual shift from freshwater to marine, and from well aerated to stagnant conditions. At about 7,000 years B.P. when deposition of unit 2 started, the H2S zone was well established. Sedimentation rates dropped to 10 cm/103 years. Environmental conditions similar to those of today finally became established around 3,000 years B.P., almost exactly the time when Jason and the Argonauts sailed through the Bosporus in search of the Golden Fleece

Phascolarctos (Marsupialia, Vombatoidea) and an Associated Fossil Fauna From Koala Cave Near Yanchep, Western Australia, 1972, Archer, M.

A recently discovered fossil fauna from Koala Cave (Yn 118), Yanchep, Western Australia, contains the marsupials Sthenurus brownei, Potorous platyops, Phascolarctos sp., Perameles sp., Vombatus sp., and a large snake. The fauna is in some respects comparable with the Mammoth Cave and Labyrinth Cave faunas of the Cape Leeuwin-Cape Naturaliste region.


Eine fossile Hhlenfauna aus dem Steinbruch Hollitzer bei Bad Deutsch-Altenburg (Niedersterreich), 1972, Rabeder, G.

The natural populations of Stenasellus virei Dollfus (trgoglobic Crustacea Asellota)., 1973, Magniez Guy
Many cavernicolous and phreatic localities are known for the species Stenasellus virei. Some of these, which harbor a rather abundant population have been studied for several years. The endemic populations from permanent waters of some fossil karstic systems seem to have an abnormal composition. They include especially large individuals (juvenile stages being rare). They differ from the phreatic populations, which exhibit a normal distribution in size groups with a normal percentage of juveniles. These differences in the structure of populations may result from physical differences between the habitat in free waters of caves and in phreatic water, and from differences between the associations of species that these two types of hypogean habitat may support.

The natural populations of Stenasellus virei Dollfus (trgoglobic Crustacea Asellota)., 1973, Magniez Guy
Many cavernicolous and phreatic localities are known for the species Stenasellus virei. Some of these, which harbor a rather abundant population have been studied for several years. The endemic populations from permanent waters of some fossil karstic systems seem to have an abnormal composition. They include especially large individuals (juvenile stages being rare). They differ from the phreatic populations, which exhibit a normal distribution in size groups with a normal percentage of juveniles. These differences in the structure of populations may result from physical differences between the habitat in free waters of caves and in phreatic water, and from differences between the associations of species that these two types of hypogean habitat may support.

Fossile Schlangenreste aus den Hhlenfllungen des Pfaffenberges bei Bad Deutsch-Altenburg (N)., 1974, Rabeder, G.

Observations on Stenasellus virei in its natural biotopes (Crustacea Isopoda Asellota of Subterranean Waters)., 1974, Magniez Guy
Thanks to intensive exploration and to new methods for capturing aquatic underground fauna. 117 localities are now known for Stenasellus virei. The description of some typical biotopes suggests that the species lives as well in karstic waters as in phreatic ones, inside the different environment of the hydrogeological classification of subterranean waters. St. virei buchneri and St. v. hussoni are almost cavernicolous. St. v. angelieri is distributed in the underground waters of Catalonia. St. v. boui is located in the underflow of Salat river basin. St. v. virei is widely distributed in the alluvial water-level of Garonne and Ebro rivers basins. The dispersion of St. virei into the alluvial environment explains the process of colonization of continental underground waters. It explains also the existence of an apparently insulated population into the sink-hole of Padirac. The actual distribution of the five subspecies is explained by important restrictions of the area in quaternary glacial ages, followed by local (in the water-level of the tributaries of Garonne river) spreading during postglacial time. The postglacial reconquest of the Salat river underflow by this species seems to have been responsible for the latest subspeciation (St. v. boui). The endemic populations of fossil karstic systems seem to have an abnormal composition. They include unusually large adults, juvenile stages being rare. They differ from the phreatic populations, which exhibit a normal distribution is size groups, with a formal percentage of juveniles. These differences between karstic and interstitial populations may result from the fact that in caves, Sr. virei is often insulated from its original phreatic biocoenosis: an intraspecific competition between size classes has taken the place of normal heterospecific struggle for existence.

Donnees geomorphologiques sur la region de Fresh Creek, Ile Andros (Bahama), 1974, Bourrouilh F,
A geomorphological study of the east coast of Andros (Fresh Creek area) shows the existence of a paleotopography represented by low-altitude hills (few metres). This paleotopography is protected by the presence of a calcitic Quaternary crust which covers Pleistocene calcarenite.In the western part of the area, there are long woody axes, oriented NE-SW, parallel to the channels of the creek. They end at two kilometres from the coast, along which is a second kind of lower hills, orthogonal to the first.The first axes can be interpreted as megaripples as seen at the present time on modern deposits (on the Great Bahama Bank) and fossilized by the upper crust. The second direction is made by accretion ripples along the coast.The surface of the Bahamian calcarenite has been studied. The Bahamian karst presents two topographical forms: “blue holes” like those outside the island, which are 60-80 m in diameter and both sparse and deep; and “washtub” dolines; these are numerous and shallow, and, from low altitude, exhibit a honeycombed aspect on the surface. This karstic topography with dolines and blue holes is also seen through the water of the Creek the hard bottom of which is covered only here and there with a few centimetres of sediments. Hence, there is a submerged karstic topography, made of the same elements as the aerial karst, but submerged by the Holocene transgression. The present karstic relief, in relation with the different eustatic levels of the Quaternary, has begun 120,000 years ago, according to the isotopic ages, and might be composed by different steps, difficult to show now, in the topography.The blue holes in the interior of the island of young and little evolved karst, were formed more by solution than by collapse of the karstic caves, because of the absence of a real river to drain the Andros shelf at the time of low sea levels. Blue holes of the inside of the island, as they are called, with submarine openings, have the same salinity as the water of the creek (17.5 g/l). The dolines with very low salinity (0.7 g/l to 3.8 g/l) are filled with stromatolites and charophytes, slowly forming sediments made up essentially of high-magnesian calcite.It seems that the Andros Island karst can be compared with that of the Yucatan, where there are round and deep open pits, called cenote, of which the Bahamian equivalent would be the blue holes which were drowned by the Holocene transgression.ResumeSur l'ile Andros, zone emergee du Grand Banc de Bahama, l'auteur montre l'existence d'une paleotopographie comprenant deux categories de rides d'orientation differente et semblant fossilisee par une croute calcitique recente et l'existence d'un karst aux formes jeunes, bien qu'heritage d'un karst holocene en voie de submersion. Ces formes sont des “blue holes” ou trous bleus circulaires (60 a 80 m de diametre) et peu nombreux, et des dolines, dites en baquet. Dans ces dolines se deposent actuellement des croutes stromatolithiques calcitiques dont l'etude est faite par diffractometrie de rayons X et microscopie electronique a balayage

Results 16 to 30 of 243
You probably didn't submit anything to search for