MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That auger is a rotary drilling device where the dry cuttings are removed continuously by helical grooves on the drill pipe [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for channel (Keyword) returned 255 results for the whole karstbase:
Showing 16 to 30 of 255
Deposition of Tufa on Ryans and Stockyard Creeks, Chillagoe Karst, North Queensland: The Role of Evaporation, 1987, Dunkerley, D. L.

A spring which feeds Ryans and Stockyard Creeks west of Cillagoe, was examined in order to understand the circumstances producing extensive deposits of tufa in the stream channels. The spring water was found to be of considerable hardness (300 ppm total carbonates) and to emerge only very slightly supersaturated with respect to calcium carbonate, but undersaturated with respect to dolomite. Both saturation levels rose very rapidly during the first 150 m of subaerial flow, as did pH and water temperature. In contrast to the reported behaviour of other limestone springs, carbonate hardness at this site does not decrease monotonically downstream, but rather locally undergoes significant increases. In particular, magnesium hardness at 1 km downstream is more than 4 times its value at the spring. These phenomena are explained in terms of evaporative concentration of the dissolved carbonates and in terms of possible chemical changes associated with the mixture of waters having contrasting characteristics at channel and pool sites along the streams.

The Hammam Zriba mine is located in a lenticular horst structure, of varying width (0.3 to 1 km) and NNW-SSE strike over about 3 kms. The mineralization is strata-bound at the top of massive Portlandian limestones and is overlain by embedded Middle to Upper Campanian limestones with marl intercalations. This horst has formed during the late Jurassic as an emerged block bound by major faults that were remobilized later during various deformation stages. These facts are clearly documented by field observations and tectonic analysis essentially along the N160-N180 trending faults in the Portlandian lithofacies. These fractures have also controlled the palaeomorphological framework of the uppermost part of the Portlandian massive facies. The overlying Campanian unit exhibits onlap structures that rest on the irregular eroded karstified and mineralized surface which forms a screen surface for the upward channelized fluids and mineral formations in karst and graben. Fluids were apparently channelized by faults trending N070-N090 and N160-180, a few hundred metres long, that have facilitated karst, dissolution and mineral deposition during tectonic events

In the carbonate aquifers which underlie most karst terrains, groundwater flow is through a dendritic system of solution conduits. In such aquifers, termed shallow conduit-flow aquifers. the methods used to mode) granular and fracture aquifers are not generally applicable. Investigations were conducted in the Inner Bluegrass Karst Region of central Kentucky with the objective of developing methods of modeling shallow conduit-flow aquifers as well as obtaining quantitative information on a specific portion of the aquifer to assist in its management for water supply purposes. In the Inner Bluegrass Karst Region, groundwater basins are developed. in each of which there is an integrated system of solution conduits which conducts recharge to a major spring. One of the largest of these groundwater basins feeds Royal Spring, which serves as the principal water supply for the town of Georgetown. The basin extends over 15 km to the southeast and most of its flow is furnished by underground diversions of Cane Run, a surface stream with headwaters near the center of the City of Lexington. The principal objectives of the field investigation were to determine discharges at the spring and travel times to the spring from discrete recharge points within the basin, termed swallets. The spring is ungaged. and an attempt was made to obtain a continuous discharge record by the dilution of dye introduced at a swallet. Comparison of the dye-dilution discharge record with stage discharges at the spring revealed substantial discrepancies which are believed to be caused by as much as five-sixths of the low-flow discharge from the upper portion of the basin bypassing the spring. The dye-dilution method, therefore, provided significant insights into the geometry of the conduit system of the groundwater basin although it proved unsatisfactory as a method of determining discharges at the spring. Analysis of the travel times and stage discharges provided information on the conduit geometry by modeling the flow as open-channel flow in a rectangular channel. Flow in the system is rapid, ranging from 140 to 590 m h-1. Although the flow rate increases with discharge, the relationship is not simple owing to substantial increases in conduit cross-sectional area at higher discharges. Flow is turbulent and subcritical under all conditions. The most surprising result was the very low depth of flow calculated; less than 17 cm at even the highest discharge. Although this must be considered an 'equivalent' depth, it is believed to indicate that active flow in shallow conduit-flow aquifers is generally in a thin zone just beneath the water table

Subterranean Waterworks of Biblical Jerusalem: Adaptation of a Karst System, 1991, Gill Dan,
Ancient Jerusalem has long been known to possess a system of subterranean waterworks by which the spring of Gihon, which issues outside the walls, could be approached from within the city, and its waters diverted to an intramural pool. Most scholars regarded these waterworks as man-made, but the techniques of underground orientation and ventilation employed by the builders, as well as the numerous anomalies and ostensible mistakes in design, mystified investigators. Geological investigation has revealed the waterworks to be part of a well-developed karst system, a network of natural dissolution channels and shafts, in the limestone and dolomite underlying the city. Thus, it was not through primary planning but by means of skillful adaptation of these pre-existing natural features that the city was ensured of a dependable water supply during both war and peace. Likewise, knowledge of the subterranean access may have played a role in David's capture of the Jebusite city

Karst hydrogeology of the Canadian Rocky Mountains, PhD Thesis, 1991, Worthington, Stephen Richard Hurst

An analysis of the discharge and hydrochemical variations of contrasting springs at Crowsnest Pass showed they were part of a vertical hierarchy in the aquifer, in which underflow and overflow components play a dominant role. It was found that karst springs at Crowsnest Pass and elsewhere show a range between two end members. Thermal springs have long, deep flow paths, with high sulphate concentrations, low discharge variance and low flow velocities. Overflow springs have local shallow flow paths, low sulphate, high discharge variance, and high flow velocities. Intermediate between these end members are underflow springs; in the Rocky Mountains these are mostly aggraded, and give the sustained winter flow and high sulphate concentrations found in major rivers. It was found that underflow or overflow behaviour is able to explain most of the contrasts found between karst springs in discharge and sulphate concentrations. Conversely, differences in bicarbonate concentration are principally due to the ratio of allogenic to autogenic recharge to the aquifer. Hydraulic analysis showed that gradients decrease in the downstream direction, and are typically 0.0001-0.05 at maximum discharges, that friction factors vary by a factor of $>$1000, and that most active conduits have closed-channel flow and are in dynamic equilibrium with sediment supply. The analysis of the hydrological data from Crowsnest Pass and elsewhere has led to the development of a new conceptual model for groundwater flow in karst, in which the Hagen-Poiseuille flow net conditions the aquifer for conduit development, and determines where the conduits will be. The model explains why most conduits are in dynamic equilibrium with sediment supply, why temperate karst springs are mostly vauclusian, what the mean time for speleogenesis is, how $>$98% of the solution of limestone is in the surficial zone, and why there are karstic hot springs in the Rocky Mountains and elsewhere. The model enables predictions to be made of sink to resurgence flow velocities, of conduit depth below the water table, of the ratio of beds to joints used by conduits, of the spacing between cave tiers, and of the depth of vauclusian springs. This new understanding of how karstic aquifers develop and function gives a powerful predictive ability to karst hydrogeology.

Analyses and interpretation of an industrial multi-channel seismic grid, a 2.3 km-deep industrial well (NMA-1) and two ODP (Sites 715 and 716), have generated new insights into the evolution of the Maldives carbonate system, Equatorial Indian Ocean. The present physiography of the Maldives Archipelago, a double chain of atolls delineating an internal basin, corresponds only to the latest phase of a long and dynamic evolution, far more complex than the simple vertical build-up of reef caps on top of thermally subsiding volcanic edifices. Through the Cenozoic evolution of the Maldives carbonate system, distinct phases of vertical growth (aggradation), exposure, regional or local drowning, and recovery of the shallow banks by lateral growth (progradation) have been recognized. The volcanic basement underlying the Maldives Archipelago is interpreted to be part of a volcanic ridge generated by the northern drift of the Indian plate on top of the hotspot of the island of Reunion. The volcanic basement recovered at well NMA-1 and ODP Site 715 has been radiometrically dated as 57.2 1.8 Ma (late Paleocene) by 40Ar-39Ar. Seismic and magnetic data indicate that this volcanic basement has been affected by a series of NNE-SSW trending subvertical faults, possibly associated with an early Eocene strike-slip motion along an old transform zone. The structural topography of the volcanic basement apprears to have dictated the initial geometry of the Eocene and early Oligocene Maldives carbonate system. Biostratigraphic analyses of samples, recovered by drilling in Site 715 and exploration well NMA-1, show that the Maldives shallow carbonate system was initiated during the early Eocene on top of what were originally subaerial volcanic edifices. The Eocene shallow carbonate sequence, directly overlying the volcanic basement at NMA-1, is dolomitized and remains neritic in nature, suggesting low subsidence rates until the early Oligocene. During this first phase of the Maldives carbonate system evolution, shallow carbonate facies aggraded on top of basement highs and thick deep-water periplatform sediments were deposited in some central seaways, precursors of the current wider internal basins. In the middle Oligocene, a plate reorganization of the equatorial Indian Ocean resulted in the segmentation of the hotspot trace and the spreading of the Maldives away from the transform zone. This plate reorganization resulted in increasing subsidence rates at NMA-1, interpreted to be associated with thermal cooling of the volcanic basement underlying the Maldives carbonate system. This middle Oligocene event also coincides with a regional irregular topographic surface, considered to represent a karst surface produced by a major low-stand. Deep-water carbonate facies, as seen in cuttings from NMA-1, overlie the shallow-water facies beneath the karst surface which can, therefore, be interpreted as a drowning unconformity. In the late Oligocene, following this regional deepening event, one single central basin developed, wider than its Eocene counterparts, and the current intraplatform basin was established. Since the early to middle Miocene, the shallow carbonate facies underwent a stage of local recovery by progradation of neritic environments towards the central basin. The simultaneous onset in the early middle Miocene of the monsoonal wind regime may explain the development of bidirectional slope progradations in the Maldives. During the late Miocene and the early Pliocene, several carbonate banks were locally drowned, whereas others (i.e. Male atoll) display well-developed lateral growth through margin progradations during the same interval. Differential carbonate productivity among the atolls could explain these diverse bank responses. High-frequency glacialeustatic sea-level fluctuations in the late Pliocene and Pleistocene resulted in periodic intervals of bank exposure and flooding, and developed the present-day physiography of atolls, with numerous faros along their rims and within their lagoons

The karst aquifer of the well-known Fontaine de Vaucluse has been recently studied, results have been got about delimitation of the system and its working. Geological data (lithology and structure) have allowed to delimit an 1115 Km2 intake area including Ventoux-Lure north facing range (1,909-1,826 m) and the Plateau which is prolonging it southwards (Fig. 1 and 2). The average altitude of the whole area, obtained by balancing elevation belt surfaces, is about 870 m. This elevation squares with results of tracing tests (Fig. 3), environmental physical, chemical and isotopic tracings, that allow to value a 850 m average altitude for the intake area (Fig. 4). The moisture balance has been computed from an altitude belts climatic model, using local rain an temperature gradients (Fig. 5 and Table II), because the weather network is not representative. So, rainfalls rise of about 55 mm per 100 m elevation and temperature decreases of about 0.5-degrees-C per 100 m. The consequence of these two antagonist phenomena is the quasi constant value of actual evapotranspiration on each altitude belt. With the Fig. 7 organigram, curves of effective rainfalls and infiltration coefficient versus elevation can be plotted (Fig. 6). This computation shows that 3/4 of the total and the whole of dry season effective rainfalls are provided by the part of the intake area situated above the average altitude: on the lowest belt, effective rainfalls are only 120 mm per year and increase to 1380 mm on the upper section (Fig. 8 and Table 1). The weighted effective rainfalls are about 570 mm per year for the whole intake area. Hydrodynamical and physico-chemical studies show, despite its large size, the weak inertia of the system, so proves its good karstification, that confirms for the whole system the pin-point speleological observations. The discharge of the spring, which average value is 21 m3.s-1 (only 18 for the last ten years), can exceed 100 m3.s-1 and the minimum has never been lower than 3.7 m3.s-1 (Fig. 9). When it rains on the intake area, the increase of the discharge is very sudden in a rainy period : one to four days. This short delay is due to seepage through epikarst and unsaturated zone. During dry periods, the spring reaction is deadened, due to storage in the unsaturated zone. The silica content distribution was plotted during several hydrokinematical phases (Fig. 10). It shows: an almost unimodal distribution for the 8 km2 fissured limestone aquifer of Groseau; a multimodal one for the 1115 km2 karst aquifer of Fontaine de Vaucluse. This proves that karstification is more important than size in the response of the system. Weak summer rainfalls do not influence the discharge, nevertheless they influence chemistry of the spring water, and so interrupts the water depletion phasis. Then, the decrease of discharge can continue after the end of the chemical depletion phasis, water which is overflowing after summer rainfalls (in a dry period) is influenced hy the chemistry of seepage water : on the graph of a principal components analysis, done on chemical variables. an hysteresis phenomenon can be seen (Fig. 11). A discriminant analysis (Fig. 12) confirms that these autumn waters, with high ratio seepage tracers, are not reserve waters from the saturated zone. The ratio of reserve water in the total discharge, is preponderant: 3/4 and 2/3 respectively of the yearly runoff volumes for 1981 and 1982 (Fig. 13), but an important part of these reserves can be stored in the unsaturated zone. This storage capacity can be valued by different means: transposing to Vaucluse (1115 km2) the volume measured on another karst system in the Pyrenees (13 km2); it gives about 100 million m2; using setting parameters of Bezes model (1976) on the same aquifer: it gives 113 million m3; using depletion curves, that show, for instance during the 1989 summer and autumn dry period, a 80 million m3 volume. In all cases, we get a value of about one hundred million m3 for the storage capacity of the unsaturated zone. With a 20 m range of fluctuation for the water table and with a 10(-2) specific yield, on a 500 to 1,000 km2 saturated zone, the zone of fluctuation can release about 10 to 20 million m3. Then, the volume of water stored in the whole saturated zone, with a 300 m minimum thickness (depth of the waterlogged pit of the Fontaine), a 500 km2 minimum surface and a 10(-3) specific yield, is about 150 million m3, including 27 million m3 stored in the channels. So, the unsaturated zone represents a significant part of the whole storage capacity and most of the yearly renewable reserves. Paradoxically, the biggest french spring is not tapped at all; as its intake area is neither a regional nor a national park, no general protection covers it : because of its good karstification, the vulnerability of the system is important. Good quality of water is attributable to the low population and human activities density on the intake area (4 A great part of the intake area is uncultivated (large forest and ''garrigues'' areas). Due to the lack of surface water and scantness of soils, agriculture is not intensive (lavender, thyme, sage and bulk wheat fields. meadowlands). On the mountainous zone, roads are salted in winter and snowmelt water can reach a significantly high chloride ratio than in a natural climatic functioning (for instance 25 mg.l-1 in Font d'Angiou where the ratio would have been 3 mg.l-1). As tourism is developing both on the mountain and on the plateau, the management of the highest intake area must be carefully held: its part is preponderant in the feeding of the system

Hrad Vallis is located in the transition zone between Elysium Mons and Utopia Planitia. Near its origin, at the northern edge of Elysium lavas, Hrad Vallis is characterized by a low-sinuousity channel within a north-northwest-trending, broad, flat-floored valley. A nearby flat-floored valley is parallel to the Hrad trend and parallel to elongate depressions, fissures, and faults in the region. An apparent hierarchy of landforms provides insight into the origin of the features associated with Hrad Vallis. The sequence leading to the development of Hrad Vallis consists of the following (1) formation of isolated depressions as either karst depressions or thermokarst valleys along faults and fissures in response to circulating ground water; (2) expansion of depressions along structural trends to coalesce as composite valleys, and (3) incision of a channel on the floor of Hrad valley by continued discharge of water from the subsurface after its initial formation by nonfluvial processes. Mud flows, polygonally fractured terrain, and chaotic terrain near the head of the major valleys suggest thixotropic behavior of saturated, clay-rich materials. An extended period of time is indicated during which freely circulating water existed on id beneath the surface of Mars. Karst and thermokarst processes imply very different climatic regimes and different host materials. The presence of karst topography implies extensive deposition of carbonates or other soluble rocks, whereas the presence of thermokarst basins implies the existence of porous, water/ice-saturated clastic or volcaniclastic materials

Upper Sinking Cove, dissecting the eastern escarpment of the Cumberland Plateau, is characterized by a multiple aquifer, predominantly vadose hydrologic system with minor surface components. There is a central trunk channel along the axis of the cove and a network of independent tributaries. Aquitards within the limestones, particularly Hartselle Formation shales, have influenced both cave and surface landform development by perching ground waters and slowing the vertical growth of closed depressions. Long-term solutional denudation in the portion of the cove underlain by limestones (40 per cent) is an estimated 56 mm per 1000 years, suggesting that karst development began 15-16 million years ago. Despite lower soil CO2 and spring water hardness, 61 per cent of annual denudation occurs in the six winter months when 76 per cent of yearly runoff occurs. Landform development in Upper Sinking Cove appears to have begun as stream erosion carved a valley first in the sandstone caprock of the escarpment and later in the underlying Pennington Formation limestones containing numerous shale layers which promoted surface stream flow. Eventually stream erosion exposed the massive Bangor limestones which allowed deep ground water flow. Surface streams were pirated underground with the eventual formation of the chain of three closed depressions which constitute Upper Sinking Cove

ROADWAY DESIGN IN KARST, 1993, Fischer Ja, Fischer Jj, Greene Rw,
To minimize costs in conventional roadway design, as much low or valley areas as possible are utilized. In many areas of the eastern United States, these valleys are filled with carbonate rocks. Excavation is used to minimize grades-this removes protective overburden or rock cover over cavities; fill also is used to minimize grades-this can increase loads on marginally stable soil arches or rock cavity roofs. Surface water runoff is directed toward low areas-the low areas are likely zones of weakness or solutioning, thereby increasing the potential for sinkhole development and providing an opportunity for groundwater contamination, and remediation usually consists of blindly filling rock cavities, thus either channeling the still-contaminated surface flows someplace else or perhaps eliminating useful ground water recharge conduits. The authors suggest that the key to proper design, construction, and remediation for roadways planned in karst is to understand the geologic and hydrogeologic setting of the route(s) or locale, perform true geotechnical engineering design, and remediate with an understanding of the overall engineering geologic, hydrogeologic, and environmental picture

Rillenkarren are defined as densely packed, rainfall generated, bedrock channels, forming on slopes. They are usually no more than a few centimetres in width. Their lengths are dependant on the downslope extent of exposed bedrock, Rillenkarren exist in many karst terraines on many types of rock. Rillenkarren on gypsum were measured at four differing sites in Nova Scotia. The results are compared with previous data for naturel rillenkarren on limestones. It was found that gypsum rillenkarren tend to exhibit a smaller mean width that those on limestone. Mean lengths could not be established because rillenkarren elongation on the gypsum was limited by the length of the exposed surface. These conclusions result from the first systematic study of naturally occurring rillenkarren on gypsum and are contrary to the previously speculated dimensions reported by various authors

Analysis of sea water intrusion associated with karstic channels beneath Ovacik Plain, southern Turkey, 1993, Elkhatib H. , Gunay G.

Analyse des conditions de dveloppement de la karstification profonde, 1994, Fourneaux, J. C.
Karstification is a dissolving process which enlarges some channels clefts and fractures and eventually creates caves. The phenomenon Is only possible in deep areas located under the base level, if water flows easily. The analysis of the physical and chemical data accumulated at the beginning of the flood shows hotter and more mineralised waters once the flow starts accelerating. The hydrodynamic study of the phenomenon allows to build a model that explains the deep karstification process. The deep karstification process occurs when a very heterogenous distribution of pressures briefly takes place in the aquiferous system at the beginning of the recharge. This is due to the fact that the waters reach the karstic conduits at different times and therefore the refill and the eviction of waters do not occur uniformly in the saturated zone. Actually, the very mineralised waters located under the base level in the caves, conduits and other holes are evicted first. Then, these waters are replaced by aggressive waters, which are often with a high C02 concentration. As a result, the limestones dissolution process starts again in the area under the outlet point and the splits and bed ding joints keep on enlarging. The heterogeneous distribution of pressures also opens new splits through a corner effect and leads to the development in depth of the karstification process.

Evolution of the Lefroy and Cowan palaeodrainage channels. Western Australia, 1994, Clarke J. D. A.

A ground water catchment was instrumented as a karst hydrology and water quality laboratory to develop long-term flow and water quality data. This catchment located in Woodford and Jessamine Counties in the Inner Bluegrass, Central Kentucky encompasses approximately 1620 ha, 40 water wells, over 400 sinkholes, 2 karst windows, and 1 sinking stream. The land uses consist of approximately 59% beef pasture, horse farm, and golf course; 16% row crops; 6% orchard; 13%forest; and 6% residential. The instrumentation consisted of a recording rain gage, an H-flume, a water stage recorder, and an automated water sampler. Flow data for 312 days were analyzed, and a peak flow rate prediction equation, specific to this catchment, was developed Recession curves were analyzed and found to be of two distinct mathematical forms, log curves and exponential curves. Prediction equations were good for the log-type recession curve and fair for the exponential-type recession curve. For the exponential recessions, the peak flow rate was found to be bimodally distributed The recession events were classified as either high flow or low flow, with the point of separation at 113 L/s. It was hypothesized that the flow system was controlled by pipe flow above 113 L/s and by open channel flow below 113 L/s. Subsequent analysis resulted in adequate prediction for the low flow events. Explained variation associated with the high flow events was low and attributed to storage in the karst system that was not incorporated into the predictor equation

Results 16 to 30 of 255
You probably didn't submit anything to search for