Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That artesian aquifer is synonymous with confined aquifer. see aquifer, artesian.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for subsurface (Keyword) returned 264 results for the whole karstbase:
Showing 16 to 30 of 264
The origin and development of Brucker Breakdown and the adjacent area, Mammoth Cave System, Kentucky. Masters Thesis, 1989, Blackeagle, Cory W.

The appearance and relationships of Brucker Breakdown and adjacent area, a portion ofthe Mammoth Cave System,implythatcomplex structural and hydrogeological factors affectected and/or controlled passage development. Detailed surveys include geographic, cartographic, lithologic, morphologic, stratigraphic, and paleoflow indicators. The five proposed scenarios were the following. Case 1: All (or most) of the passages were once continuous across the Brucker Breakdown void, which is a subsequent feature. Case Ia: The Brucker Breakdown void is a subsequentfeature whose development caused morphological changes in the pre-existing passages adjacent to it (traditional hypothesis). Case II: The passages converge toward or diverge from the Brucker Breakdown void, which acted as either a source or target of flow and is a primary feature. Case Ila: Several passages converge on the Brucker Breakdown void and fewer components depart from it, indicating that the Brucker Breakdown void is a primary feature and represented a local potentiometric low. Case lIb: Several passages diverge from the Brucker Breakdown void, and fewer components converge on it, indicating that the Brucker Breakdown void is a primary feature and represented a local potentiometric high. Of these, Case lib was found to most closely represent the situation presented by the data.

To perform this study, a detailed procedure was developed that, until this time, had not been established nor outlined in the literature. Once the area of study was chosen and defined, an extremely detailed cartographic and morphologic survey was performed that established both horizontal and vertical data points throughout the area. These data points were tied to existing transit surveys of the surface that linked the subsurface area to U.S. Geological Survey bench marks. The cartographic, geographic, and morphologic data were converted with computer aid to map form. The maps were then field-checked for accuracy. Comprehensive geological mapping surveys were executed. Multiple stratigraphic sections were described and measured in each passage segment, and these were tied to the vertical data points. Correlations were made between sections and were physically traced whenever conditions permitted. Speleothem dating information from prior research was obtained and correlated throughout the study area. Finally, important features and passage morphologies were documented photographically.


Land subsidence in the AI-Dahr residential area in Kuwait: a case history study, 1990, Airifaiy Ia,
Four cylindrical sinkholes occurred between April 1988 and June 1989 in a residential area located 27 km south of Kuwait City. The physiographic and geological conditions of their development and the methods of survey followed to detect potential subsurface cavities in the area are discussed. The major sinkhole is 15 m in diameter and 31 m deep; the others are a few metres in size. A mechanism of migrating sinkholes is suggested, where the upper elastic sediments have been moved down into cavities of the underlying Dammam Limestone. Such movement could have been triggered by garden irrigation and urbanization. A conceptual model is introduced to explain the mechanism of this subsidence. Microgravity techniques were applied using a La Coste Model-D gravimeter to detect areas of subsurface weakness. Negative anomalies in the order of 80 microgals were recorded and considered to indicate underground cavities or zones of contrasted mass-deficiencies representing high risk areas. Moderate anomalies were also recorded and attributed to poor compaction of the ground prior to construction

LATE-STAGE DOLOMITIZATION OF THE LOWER ORDOVICIAN ELLENBURGER GROUP, WEST TEXAS, 1991, Kupecz J. A. , Land L. S. ,
Petrography of the Lower Ordovician Ellenburger Group, both in deeply-buried subsurface cores and in outcrops which have never been deeply buried, documents five generations of dolomite, three generations of microquartz chert, and one generation of megaquartz. Regional periods of karstification serve to subdivide the dolomite into 'early-stage', which predates pre-Middle Ordovician karstification, and 'late-stage', which postdates pre-Middle Ordovician karstification and predates pre-Permian karstification. Approximately 10% of the dolomite in the Ellenburger Group is 'late-stage'. The earliest generation of late-stage dolomite, Dolomite-L1, is interpreted as a precursor to regional Dolomite-L2. L1 has been replaced by L2 and has similar trace element, O, C, and Sr isotopic signatures, and similar cathodoluminescence and backscattered electron images. It is possible to differentiate L1 from L2 only where cross-cutting relationships with chert are observed. Replacement Dolomite-L2 is associated with the grainstone, subarkose, and mixed carbonate-siliciclastic facies, and with karst breccias. The distribution of L2 is related to porosity and permeability which focused the flow of reactive fluids within the Ellenburger. Fluid inclusion data from megaquartz, interpreted to be cogenetic with Dolomite-L2, yield a mean temperature of homogenization of 85 6-degrees-C. On the basis of temperature/delta-O-18-water plots, temperatures of dolomitization ranged from approximately 60 to 110-degrees-C. Given estimates of maximum burial of the Ellenburger Group, these temperatures cannot be due to burial alone and are interpreted to be the result of migration of hot fluids into the area. A contour map of delta-O-18 from replacement Dolomite-L2 suggests a regional trend consistent with derivation of fluids from the Ouachita Orogenic Belt. The timing and direction of fluid migration associated with the Ouachita Orogeny are consistent with the timing and distribution of late-stage dolomite. Post-dating Dolomite-L2 are two generations of dolomite cement (C1 and C2) that are most abundant in karst breccias and are also associated with fractures, subarkoses and grainstones. Sr-87/Sr-86 data from L2, C1, and C2 suggest rock-buffering relative to Sr within Dolomite-L2 (and a retention of a Lower Ordovician seawater signature), while cements C1 and C2 became increasingly radiogenic. It is hypothesized that reactive fluids were Pennsylvanian pore fluids derived from basinal siliciclastics. The precipitating fluid evolved relative to Sr-87/Sr-86 from an initial Pennsylvanian seawater signature to radiogenic values; this evolution is due to increasing temperature and a concomitant evolution in pore-water geochemistry in the dominantly siliciclastic Pennsylvanian section. A possible source of Mg for late-stage dolomite is interpreted to be from the dissolution of early-stage dolomite by reactive basinal fluids

APPLICATION OF MICROBIAL TRACERS IN GROUNDWATER STUDIES, 1991, Hotzl H. , Kass W. , Reichert B. ,
In situ tracing experiments have proved to be reliable tools to get direct information on subsurface flow direction and flow parameters. Beside dyes, salts, radioisotopes and drift bodies, microbes can be used as tracers. In several comparative experiments carried out in porous and karst aquifers by the International Association of Tracer Hydrology (ATH) the microbial markers (bacteria and bacteriophages) have shown promising results. They are especially suitable to explain and model the subsurface transport of microorganisms

CAYMANITE, A CAVITY-FILLING DEPOSIT IN THE OLIGOCENE MIOCENE BLUFF FORMATION OF THE CAYMAN ISLANDS, 1992, Jones B. ,
Caymanite is a laminated, multicoloured (white, red, black) dolostone that fills or partly fills cavities in the Bluff Formation of the Cayman Islands. The first phase of caymanite formation occurred after deposition, lithification, and karsting of the Oligocene Cayman Member. The second phase of caymanite formation occurred after joints had developed in the Middle Miocene Pedro Castle Member. Caymanite deposition predated dolomitization of the Bluff Formation 2-5 Ma ago. Caymanite is formed of mudstones, wackestone, packstones, and grainstones. Allochems include foraminifera, red algae, gastropods, bivalves, and grains of microcrystalline dolostone. Sedimentary structures include planar laminations, graded bedding, mound-shaped laminations, desiccation cracks, and geopetal fabrics. Original depositional dips ranged from 0 to 60-degrees. Although caymanite originated as a limestone, dolomitization did not destroy the original sedimentary fabrics or structures. The sediments that formed caymanite were derived from shallow offshore lagoons, swamps, and possibly brackish-water ponds. Pigmentation of the red and black laminae can be related to precipitates formed of Mn, Fe, Al, Ni, Ti, P, K, Si, and Ca, which occur in the intercrystalline pores. These elements may have been derived from terra rossa, which occurs on the weathered surface of the Bluff Formation. Caymanite colours were inherited from the original limestone. Stratigraphic and sedimentologic evidence shows that sedimentation was episodic and that the sediment source changed with time. Available evidence suggests that caymanite originated from sediments transported by storms onto a highly permeable karst terrain. The water with its sediment load then drained into the subsurface through joints and fissures. The depth to which these waters penetrated was controlled by the length of the interconnected cavity system. Upon entering cavities, sedimentation was controlled by a complex set of variables

POLYGENETIC ORIGIN OF HRAD-VALLIS REGION OF MARS, 1992, Dehon Ra,
Hrad Vallis is located in the transition zone between Elysium Mons and Utopia Planitia. Near its origin, at the northern edge of Elysium lavas, Hrad Vallis is characterized by a low-sinuousity channel within a north-northwest-trending, broad, flat-floored valley. A nearby flat-floored valley is parallel to the Hrad trend and parallel to elongate depressions, fissures, and faults in the region. An apparent hierarchy of landforms provides insight into the origin of the features associated with Hrad Vallis. The sequence leading to the development of Hrad Vallis consists of the following (1) formation of isolated depressions as either karst depressions or thermokarst valleys along faults and fissures in response to circulating ground water; (2) expansion of depressions along structural trends to coalesce as composite valleys, and (3) incision of a channel on the floor of Hrad valley by continued discharge of water from the subsurface after its initial formation by nonfluvial processes. Mud flows, polygonally fractured terrain, and chaotic terrain near the head of the major valleys suggest thixotropic behavior of saturated, clay-rich materials. An extended period of time is indicated during which freely circulating water existed on id beneath the surface of Mars. Karst and thermokarst processes imply very different climatic regimes and different host materials. The presence of karst topography implies extensive deposition of carbonates or other soluble rocks, whereas the presence of thermokarst basins implies the existence of porous, water/ice-saturated clastic or volcaniclastic materials

DISLOCATION OF THE EVAPORITIC FORMATIONS UNDER TECTONIC AND DISSOLUTION CONTROLS - THE MODEL OF THE DINANTIAN EVAPORITES FROM VARISCAN AREA (NORTHERN FRANCE AND BELGIUM), 1993, Rouchy J. M. , Groessens E. , Laumondais A. ,
Within the Franco-Belgian segment of the Hercynian orogen, two thick Dinantian anhydritic formations are known, respectively in the Saint-Ghislain (765 m) and Epinoy 1 (904 m) wells. Nevertheless, occurrences of widespread extended breccias and of numerous pseudomorphs of gypsum/anhydrite in stratigraphically equivalent carbonate deposits (boreholes and outcrops), suggest a larger extent of the evaporitic conditions (fig. 1, 2). The present distribution of evaporites is controlled by palaeogeographical differentiation and post-depositional parameters such as tectonics and dissolution. These latter have dissected the deposits formerly present in all the structural units. By using depositional, diagenetic and deformational characters of these formations, the article provides a model for the reconstruction of a dislocated evaporitic basin. This segment of the Hercynian chain is schematically composed of two main units (fig. 1, 3) : (1) the autochthonous or parautochthonous deposits of the Namur synclinorium, (2) the Dinant nappe thrusted northward over the synclinorium of Namur. The major thrust surface is underlined by a complex fault bundle (faille du Midi) seismically recognized over more than 100 km. A complex system of thrust slices occurs at the Hercynian front. Except for local Cretaceous deposits, most of the studied area has been submitted to a long period of denudation since the Permian. Sedimentary, faunistic and geochemical data argue for a marine origin of the brines which have generated the evaporites interbedded with marine limestones. Sedimentary structures. - The thick evaporitic formations are composed of calcium-sulfates without any clear evidence of the former presence of more soluble salts (with the exception of a possible carbonate-sulfate breccia in the upper part of the Saint-Ghislain formation). As in all the deeply buried evaporitic formations, the anhydrite is the main sulfate component which displays all the usual facies : pseudomorphs after gypsum (fig. 4A, B), nodular and mosaic (fig. 4C), laminated. The gypsum was probably an important component during the depositional phase despite the predominant nodular pattern of the anhydrite. Early diagenetic nodular anhydrite may have grown during temporary emersion of the carbonates (sabkha environments), but this mechanism cannot explain the formation of the whole anhydrite. So, most of the anhydrite structures result from burial-controlled gypsum --> anhydrite conversion and from mechanical deformations. Moreover, a complex set of diagenetic processes leads to various authigenic minerals (celestite, fluorite, albite, native sulfur, quartz and fibrous silica) and to multistaged carbonate <> sulfate replacements (calcite and dolomite after sulfate, replacive anhydrite as idiomorphic poeciloblasts, veinlets, domino-like or stairstep monocrystals...). These mineral transformations observed ill boreholes and in outcrops have diversely been controlled during the complex evolution of the series as : depositional and diagenetic pore-fluid composition, pressure and temperature changes with burial, bacterial and thermochemical sulfate reduction, deep circulations favored by mechanical brecciation, mechanical stresses, role of groundwater during exhumation of the series. Deformational structures. - A great variety of deformational structures as rotational elongation, stretching, lamination, isoclinal microfolding, augen-like and mylonitic structures are generated by compressive tectonic stresses (fig. 4D to J). The similarities between tectonic-generated structures and sedimentary (lamination) or diagenetic (pseudo-nodules) features could lead lo misinterpretations. The calcareous interbeds have undergone brittle deformation the style and the importance of which depend of their relative thickness. Stretching, boudins, microfolds and augen structures F, H. I) affect the thin layers while thicker beds may be broken as large fractured blocks dragged within flown anhydrite leading to a mylonitic-like structure (fig, 4G). In such an inhomogeneous formation made of interlayered ductile (anhydrite) and brittle (carbonate) beds, the style and the intensity of the deformation vary with respect to the relative thickness of each of these components. Such deformational features of anhydrite may have an ubiquitous significance and can result either from compressive constraints or geostatic movements (halokinesis). Nevertheless, some data evidence a relation with regional tangential stresses: (1) increase of the deformation toward the bottom of the Saint-Ghislain Formation which is marked by a deep karst suggesting the presence of a mechanical discontinuity used as a drain for dissolving solutions (fig. 3, 4); (2) structural setting (reversed series, internal slidings) of the Epinoy 1 formation under the Midi thrust. However, tectonic stresses also induce flowing deformations which have contributed to cause their present discontinuity. It can be assumed that the evaporites played an active role for the buckling of the regional structure as detachment or gliding layers and more specifically for the genesis of duplex structures. Breccia genesis. - Great breccia horizons are widely distributed in outcrops as well as in the subsurface throughout the greater part of the Dinant and Namur units (fig. 2). The wide distribution of pseudomorphosed sulfates in outcrops and the stratigraphical correlation between breccia and Saint-Ghislain evaporitic masses (fig. 2) suggest that some breccia (although not all) have been originated from collapse after evaporites solution. Although some breccia may result from synsedimentary dissolution, studied occurrences show that most of dissolution processes started after the Hercynian deformation and, in some cases, were active until recently : elements made of lithified and fractured limestones (Llandelies quarries) (fig. 5A), preservation of pseudomorphs of late replacive anhydrite (Yves-Gomezee) (fig. 5B, C), deep karst associated with breccia (Douvrain, Saint Ghislain, Ghlin boreholes) (fig. 3, 4, 5D)). Locally, the final brecciation may have been favored by a mechanical fragmentation which controlled water circulations (fig. 5E). As postulated by De Magnee et al. [19861, the dissolution started mostly after the Permian denudation and continued until now in relation with deep circulations and surface weathering (fig. 6). So, the above-mentioned occurrences of the breccia are logically explained by collapse after dissolution of calcium-sulfates interbeds of significant thickness (the presence of salt is not yet demonstrated), but other Visean breccia may have a different origin (fig. 5F). So, these data prove the extension of thick evaporitic beds in all the structural units including the Dinant nappe, before dissolution and deformation. Implications. - Distribution of Visean evaporites in northern France and Belgium is inherited from a complicated paleogeographic, tectonic and post-tectonic history which has strongly modified their former facies, thicknesses and limits (fig. IA, 6). Diversified environments of deposition controlled by both a palaeogeographical differentiation and water level fluctuations led to the deposition of subaqueous (gypsum) or interstitial (gypsum, anhydrite) crystallization. Nevertheless, most of the anhydrite structures can be interpreted as resulting from burial conversion of gypsum to anhydrite rather than a generalized early diagenesis in sabkha-like conditions. Deformation of anhydrite caused by Hercynian tangential stresses and subsequent flow mechanisms, have completed the destruction of depositional and diagenetic features. The tectonic deformations allow us to consider the role of the evaporites in the Hercynian deformations. The evaporites supplied detachment and gliding planes as suggested for the base of the Saint-Ghislain Formation and demonstrated by the structural setting of Epinoy 1 evaporites in reverse position and in a multi-system of thrust-slices below the Midi overthrust (fig. 7). So, although the area in which evaporation and precipitation took place cannot be exactly delineated in geographic extent, all the data evidence that the isolated thick anhydritic deposits represent relics of more widespread evaporites extending more or less throughout the different structural units of this Hercynian segment (fig. 1B). Their present discontinuity results from the combination of a depositional differentiation, mechanical deformations and/or dissolution

FORMATION OF REGOLITH-COLLAPSE SINKHOLES IN SOUTHERN ILLINOIS - INTERPRETATION AND IDENTIFICATION OF ASSOCIATED BURIED CAVITIES, 1994, Panno S. V. , Wiebel C. P. , Heigold P. C. , Reed P. C. ,
Three regolith-collapse sinkholes formed near the Dongola Unit School and the Pentecostal Church in the southern Illinois village of Dongola (Union County) during the spring of 1993. The sinkholes appeared over a three-month period that coincided with development of a new municipal well. The new well was drilled through clay-rich, valley-fill sediment into karstified limestone bedrock. The piezometric surface of the limestone aquifer is above land surface, indicating the presence of an upward hydraulic gradient in the valley and that the valley fill is acting as a confining unit. Pumping during development of the well lowered the piezometric surface of the limestone aquifer to an elevation below the base of the valley fill. It is hypothesized that drainage of water from the sediments, the resulting loss of hydrostatic pressure and buoyant force in overlying sediments, increased intergranular pressure, and the initiation of groundwater flow toward the well resulted in rapid sediment transport, subsurface erosion, and collapse of the valley-fill sediment. The sinkholes follow an approximately east west alignment, which is consistent with one of the two dominant alignments of passages of nearby joint-controlled caves. A constant electrode-separation resistivity survey of the school playground was conducted to locate areas that might contain incipient sinkholes. The survey revealed a positive resistivity anomaly trending N75E in the southern part of the study area. The anomaly is linear, between 5 and 10 m wide. and its trend either intersects or is immediately adjacent to the three sinkholes. The anomaly is interpreted to be a series of pumping-induced cavities in the valley-fill sediments that formed over a preexisting crevice in the karstified bedrock limestone

USING GROUND-PENETRATING RADAR TO INVESTIGATE A SUBSURFACE KARST LANDSCAPE IN NORTH-CENTRAL FLORIDA, 1994, Collins Me, Cum M, Hanninen P,
Doline formation in karst areas has been a major concern in Florida. Recently, there has been increased interest in investigating the subsurface conditions that influences preferential flow in these karst landscapes. This information is necessary to improve transport and fate models of contaminants. In addition, there is interest in knowing if the formation and expansion of dolines can be predicted by studying subsurface conditions and flow patterns. The soils on the Newberry Limestone Plain are typically sandy above a thin or absent phosphatic, clayey Hawthorne Formation. Underlying this formation is the Crystal River Limestone. A field survey with ground-penetrating radar (GPR) was conducted on the Newberry Limestone Plain at a site with recently formed dolines. The objectives were (i) to investigate the subsurface materials, (ii) to ascertain subsurface landscape variability, (iii) to relate the subsurface landscapes to subsurface flow patterns, and (iv) to predict doline growth and formation in the study area. The results of this study indicated that the subsurface features; presence of clay over limestone, location of solution pipes and paleo-dolines are variable. In general, the subsurface landscape does not follow the surface topography. Subsurface solute movement can be estimated in these landscapes assuming the clay layer that drapes the limestone acts as an aquatarde. Thus, subsurface modeling of flow at the study site is improved. Locations of paleo-dolines and solution pipes were obvious in the radar data. Predictions, though, of future doline formation and growth at the study site were difficult with GPR. Fracture patterns, e.g. dips in the limestone, can be evaluated and weak zones where paleo-dolines have formed can be identified. This study would not have been possible without the use of the GPR. The radar was able to obtain continuous information on 16% of the site to a depth of 3 m. A highly detailed soil survey using conventional methods would have provided only 0.8% coverage of the site

Karstification without carbonic acid; bedrock dissolution by gypsum-driven dedolomitization, 1994, Bischoff Jl, Julia R, Shanks Wc, Rosenbauer Rj,
Aggressive karstification can take place where dolomite and gypsum are in contact with the same aquifer. Gypsum dissolution drives the precipitation of calcite, thus consuming carbonate ions released by dolomite. Lake Banyoles, in northeastern Spain, is a karst lake supplied by sublacustrine springs, and karstic collapse is occurring in the immediate vicinity of the lake. Lake water is dominated by Mg-Ca and SO 4 -HCO 3 , and is supersaturated with calcite that is actively accumulating in lake sediments. Water chemistry, sulfur isotope composition, local stratigraphy, and mass-balance modeling suggest that the primary karst-forming process at Lake Banyoles is dedolomitization of basement rocks driven by gypsum dissolution. Karstification takes place along the subsurface contact between the gypsiferous Beuda Formation and the dolomitic Perafita Formation. This process is here recognized for the first time to cause karstification on a large scale; this is significant because it proceeds without the addition of soil-generated carbonic acid. Gypsum-driven dedolomitization may be responsible for other karstic systems heretofore attributed to soil-generated carbonic acid

KARSTIFICATION WITHOUT CARBONIC-ACID - BEDROCK DISSOLUTION BY GYPSUM-DRIVEN DEDOLOMITIZATION, 1994, Bischoff Jl, Julia R, Shanks Wc, Rosenbauer Rj,
Aggressive karstification can take place where dolomite and gypsum are in contact with the same aquifer. Gypsum dissolution drives the precipitation of calcite, thus consuming carbonate ions released by dolomite. Lake Banyoles, in northeastern Spain, is a karst lake supplied by sublacustrine springs, and karstic collapse is occurring in the immediate vicinity of the lake. Lake water is dominated by Mg-Ca and SO4-HCO3, and is supersaturated with calcite that is actively accumulating in lake sediments. Water chemistry, sulfur isotope composition, local stratigrapy, and mass-balance modeling suggest that the primary karst-forming process at Lake Banyoles is dedolomitization of basement rocks driven by gypsum dissolution. Karstification takes place along the subsurface contact between the gypsiferous Beuda Formation and the dolomitic Perafita Formation. This process is here recognized for the first time to cause karstification on a large scale; this is significant because it proceeds without the addition of soil-generated carbonic acid. Gypsum-driven dedolomitization may be responsible for other karstic systems heretofore attributed to soil-generated carbonic acid

HIGH-RESOLUTION SEISMIC EXPRESSION OF KARST EVOLUTION WITHIN THE UPPER FLORIDIAN AQUIFER SYSTEM - CROOKED LAKE, POLK COUNTY, FLORIDA, 1994, Evans Mw, Snyder Sw, Hine Ac,
We collected 43 km of high resolution seismic reflection profiles from a 14.5-hectare lake in the central Florida sinkhole district and data from three adjacent boreholes to determine the relationship between falling lake levels and the underlying karst stratigraphy. The lake is separated from karstified Paleogene to early Neogene carbonates by 65-80 m of siliciclastic sands and clays. The carbonate and clastic strata include three aquifer systems separated by clay-confining units: a surficial aquifer system (fine to medium quartz sand in the upper 20-30 m), the 25-35 m thick intermediate aquifer system (in Neogene siliciclastics), and the highly permeable upper Floridan aquifer system in Paleogene to early Neogene limestones. Hydraulic connection between these aquifer systems is indicated by superjacent karst structures throughout the section. Collapse zones of up to 1000 m in diameter and > 50 m depth extend downward from a prominent Middle Miocene unconformity into Oligocene and Upper Eocene limestones. Smaller sinkholes (30-100 m diameter, 10-25 m depth) are present in Middle to Late Neogene clays, sands, and carbonates and extend downward to or below the Middle Miocene unconformity. Filled and open shafts (30-40 m diameter; 10-25 m depth) ring the lake margin and overlie subsurface karst features. The large collapse zones are localized along a northeast-southwest line in the northern ponds and disrupt or deform Neogene to Quaternary strata and at least 50 m of the underlying Paleogene carbonate rocks. The timing and vertical distribution of karst structures are used to formulate a four-stage model that emphasizes stratigraphic and hydrogeologic co-evolution. (1) Fracture-selective shallow karst features formed on Paleogene/early Neogene carbonates. (2) Widespread karstification was limited by deposition of Middle Miocene clays, but vertical karst propagation continued and was focused because of the topographic effects of antecedent karst. (3) Groundwater heads, increase with the deposition of thick sequences of clastics over the semipermeable clays during Middle and Late Neogene time. The higher water table and groundwater heads allowed the accumulation of acidic, organic-rich soils and chemically aggressive waters that percolated down to Paleogene carbonates via localized karst features. (4) After sufficient subsurface dissolution, the Paleogene carbonates collapsed, causing disruption and deformation of overlying strata. The seismic profiles document an episodic, vertically progressive karst that allows localized vertical leakage through the clay-confining units. The spatial and temporal karst distribution is a result of deposition of sediments with different permeabilities during high sea levels and enhanced karst dissolution during low sea levels. Recent decreases in the potentiometric elevation of the Floridan Aquifer System simulates a sea-level lowstand, suggesting that karst dissolution will increase in frequency and magnitude

Using ground-penetrating radar to investigate a subsurface karst landscape in north-central Florida, 1994, Collins M. E. , Cure M. , Hanninen P.

Doline formation in karst areas has been a major concern in Florida. Recently, there has been increased interest in investigating the subsurface conditions that influences preferential flow in these karst landscapes. This information is necessary to improve transport and fate models of contaminants. In addition, there is interest in knowing if the formation and expansion of dolines can be predicted by studying subsurface conditions and flow patterns. The soils on the Newberry Limestone Plain are typically sandy above a thin or absent phosphatic, clayey Hawthorne Formation. Underlying this formation is the Crystal River Limestone. A field survey with ground-penetrating radar (GPR) was conducted on the Newberry Limestone Plain at a site with recently formed dolines. The objectives were (i) to investigate the subsurface materials, (ii) to ascertain subsurface landscape variability, (iii) to relate the subsurface landscapes to subsurface flow patterns, and (iv) to predict doline growth and formation in the study area. The results of this study indicated that the subsurface features; presence of clay over limestone, location of solution pipes and paleo-dolines are variable. In general, the subsurface landscape does not follow the surface topography. Subsurface solute movement can be estimated in these landscapes assuming the clay layer that drapes the limestone acts as an aquatarde. Thus, subsurface modeling of flow at the study site is improved. Locations of paleo-dolines and solution pipes were obvious in the radar data. Predictions, though, of future doline formation and growth at the study site were difficult with GPR. Fracture patterns, e.g. dips in the limestone, can be evaluated and weak zones where paleo-dolines have formed can be identified. This study would not have been possible without the use of the GPR. The radar was able to obtain continuous information on 16% of the site to a depth of 3 m. A highly detailed soil survey using conventional methods would have provided only 0.8% coverage of the site


Synsedimentary collapse of portions of the lower Blomidon Formation (Late Triassic), Fundy rift basin, Nova Scotia, 1995, Ackermann Rv, Schlische Pw, Olsen Pe,
A chaotic mudstone unit within the lower Blomidon Formation (Late Triassic) has been traced for 35 km in the Mesozoic Fundy rift basin of Nova Scotia. This unit is characterized by highly disrupted bedding that is commonly cut by small (<0.5 m) domino-style synsedimentary normal faults, downward movement of material, geopetal structures, variable thickness, and an irregular, partially faulted contact with the overlying unit. The chaotic unit is locally overlain by a fluvial sandstone, which is overlain conformably by mudstone. Although the thickness of the sandstone is highly variable, the overlying mudstone unit exhibits only gentle regional dip. The sandstone unit exhibits numerous soft-sediment deformation features, including dewatering structures, convoluted bedding, kink bands, and convergent fault fans. The frequency and intensity of these features increase dramatically above low points at the base of the sandstone unit. These stratigraphic relations suggest buried interstratal karst, the subsurface dissolution of evaporites bounded by insoluble sediments. We infer that the chaotic unit was formed by subsidence and collapse resulting from the dissolution of an evaporite bed or evaporite-rich unit by groundwater, producing dewatering and synsedimentary deformation structures in the overlying sandstone unit, which infilled surface depressions resulting from collapse. In coeval Moroccan rift basins, facies similar to the Blomidon Formation are associated with halite and gypsum beds. The regional extent of the chaotic unit indicates a marked period of desiccation of a playa lake of the appropriate water chemistry. The sedimentary features described here may be useful for inferring the former existence of evaporites or evaporite-rich units in predominantly elastic terrestrial environments

BLUE HOLES - DEFINITION AND GENESIS, 1995, Mylroie J. E. , Carew J. L. , Moore A. I. ,
Blue holes are karst features that were initially described from Bahamian islands and banks, which have been documented for over 100 years. They are water-fined vertical openings in the carbonate rock that exhibit complex morphologies, ecologies, and water chemistries. Their deep blue color, for which they are named, is the result of their great depth, and they may lead to cave systems below sea level Blue holes are polygenetic in origin, having formed: by drowning of dissolutional sinkholes and shafts developed in the vadose zone; by phreatic dissolution along an ascending halocline; by progradational collapse upward from deep dissolution voids produced in the phreatic zone; or by fracture of the bank: margin. Blue holes are the cumulative result of carbonate deposition and dissolution cycles which have been controlled by Quaternary glacioeustatic fluctuations of sea-level. Blue holes have been widely studied during the past 30 years, and they have provided information regarding karst processes, global climate change, marine ecology, and carbonate geochemistry. The literature contains a wealth of references regarding blue holes that are at times misleading, and often confusing. To standardize use of the term blue hob, and to familiarize the scientific community with their nature, we herein define them as follows: ''Blue holes are subsurface voids that are developed in carbonate banks and islands; are open to the earth's surface; contain tidally-influenced waters of fresh, marine, or mixed chemistry; extend below sea level for a majority of their depth; and may provide access to submerged cave passages.'' Blue holes are found in two settings: ocean holes open directly into the present marine environment and usually contain marine water with tidal now; inland blue holes are isolated by present topography from surface marine conditions, and open directly onto the land surface or into an isolated pond or lake, and contain tidally-influenced water of a variety of chemistries from fresh to marine

Results 16 to 30 of 264
You probably didn't submit anything to search for