Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That interflow is subsurface runoff [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for climate record (Keyword) returned 29 results for the whole karstbase:
Showing 16 to 29 of 29
Solar forcing of Holocene climate: New insights from a speleothem record, southwestern United States, 2007, Asmerom Y, Polyak V, Burns S, Rassmussen J,
Holocene climate change has likely had a profound influence on ecosystems and culture. A link between solar forcing and Holocene climate, such as the Asian monsoon, has been shown for some regions, although no mechanism for this relationship has been suggested. Here we present the first high-resolution complete Holocene climate record for the North American monsoon region of the southwestern United States (southwest) in order to address the nature and causes of Holocene climate change. We show that periods of increased solar radiation correlate with decreased rainfall, the opposite to that observed in the Asian monsoon, and suggest that a solar link to Holocene climate is through changes in the Walker circulation and the Pacific Decadal Oscillation and El Nino-Southern Oscillation systems of the tropical Pacific Ocean. Given the link between increased warming and aridity in the southwest, additional warming due to greenhouse forcing could potentially lead to persistent hyperarid conditions, similar to those seen in our record during periods of high solar activity

Climatic differences and similarities between Indian and East Asian Monsoon regions of China over the last millennium: a perspective based mainly on stalagmite records, 2007, Tan Ming
Cave sediments, especially stalagmites, have been providing absolute dated climate records that can extend from the present to over 500,000 years ago. Based on the reconstructed temperature time series, a comprehensive overview of the climatic differences and similarities between the Indian and the East Asian Monsoon regions of China over the last millennium is presented. Evidence from accurately dated and high-resolution records including stalagmites, ice cores and tree rings show that there was a Medieval Warm Period (around 1000 to 1400 AD) in north and east China where climate is dominated by the East Asian monsoon; whilst no such interval is evident in the records including stalagmites and ice cores from southwest China where climate is dominated by the Indian monsoon. However, both regions underwent a significant cooling during the Little Ice Age (around the mid 1500s to the 1800s). The result achieved here may allow a possibility of distinguishing the boundary between Indian monsoon and East Asian monsoon regions over the last millennium with increase of climate records, especially stalagmites that are mostly suitable for accurate U/Th dating and/or lamina counting.

Climatic similarities and differences between Northeast and Southwest China over the last millennium: a perspective based on stalagmite records., 2007, Tan, Ming
Cave sediments, especially stalagmites, have been providing absolute dated climate records that can extend from the present to over 500,000 years ago. Based on the reconstructed temperature time series, a comprehensive overview of the climatic differences and similarities between the Indian and the East Asian Monsoon regions of China over the last millennium is presented. Evidence from accurately dated and high-resolution records including stalagmites, ice cores and tree rings show that there was a Medieval Warm Period (around 1000 to 1400 AD) in north and east China where climate is dominated by the East Asian monsoon; whilst no such interval is evident in the records including stalagmites and ice cores from southwest China where climate is dominated by the Indian monsoon. However, both regions underwent a significant cooling during the Little Ice Age (around the mid 1500s to the 1800s). The result achieved here may allow a possibility of distinguishing the boundary between Indian monsoon and East Asian monsoon regions over the last millennium with increase of climate records, especially stalagmites that are mostly suitable for accurate U/Th dating and/or lamina counting.

Climatic differences and similarities between Indian and East Asian Monsoon regions of China over the last millennium: a perspective based mainly on stalagmite records, 2007, Tan, M.

Cave sediments, especially stalagmites, have been providing absolute dated climate records that can extend from the present to over 500,000 years ago. Based on the reconstructed temperature time series, a comprehensive overview of the climatic differences and similarities between the Indian and the East Asian Monsoon regions of China over the last millennium is presented. Evidence from accurately dated and high-resolution records including stalagmites, ice cores and tree rings show that there was a “Medieval Warm Period” (around 1000 to 1400 AD) in north and east China where climate is dominated by the East Asian monsoon; whilst no such interval is evident in the records including stalagmites and ice cores from southwest China where climate is dominated by the Indian monsoon. However, both regions underwent a significant cooling during the Little Ice Age (around the mid 1500s to the 1800s). The result achieved here may allow a possibility of distinguishing the boundary between Indian monsoon and East Asian monsoon regions over the last millennium with increase of climate records, especially stalagmites that are mostly suitable for accurate U/Th dating and/or lamina counting.


Environmental Monitoring in the Mechara caves, Southeastern Ethiopia: Implications for Speleothem Palaeoclimate Studies, 2008, Asrat A. , Baker A. , Leng M. J. , Gunn J. And Umer M.
The interpretation of palaeoclimate records in speleothems depends on the understanding of the modern climate of the region, the geology, the hydrology above the caves, and the within-cave climate. Monitoring within-cave climate variability, geochemistry of speleothem-forming drip waters, and associated surface and groundwater, provides a modern baseline for interpretation of speleothem palaeohydrological and palaeoclimate records. Here, we present results of such monitoring of the Mechara caves in southeastern Ethiopia, conducted between 2004 and 2007. Results show nearly constant within-cave climate (temperature and humidity) in all caves, which generally reflects the surface climate. Groundwater and surface water geochemistry is similar across the region (except slight modification by local lithological variations) and modern drip water isotope data fall close to regional Meteoric Water Line, but speleothems further from equilibrium. Holocene and modern speleothems from these caves give high-resolution climate records, implying that the Mechara caves provide a suitable setting for the deposition of annually laminated speleothems that could record surface climate variability in a region where rainfall is sensitive to both the strength of the intertropical convergence zone as well as Indian Monsoon variability.

Environmental Monitoring in the Mechara caves, Southeastern Ethiopia: Implications for Speleothem Palaeoclimate Studies, 2008, Asrat A. , Baker A. , Leng M. J. , Gunn J. , Umer M.

The interpretation of palaeoclimate records in speleothems depends on the understanding of the modern climate of the region, the geology, the hydrology above the caves, and the within-cave climate. Monitoring within-cave climate variability, geochemistry of speleothem-forming drip waters, and associated surface and groundwater, provides a modern baseline for interpretation of speleothem palaeohydrological and palaeoclimate records. Here, we present results of such monitoring of the Mechara caves in southeastern Ethiopia, conducted between 2004 and 2007. Results show nearly constant within-cave climate (temperature and humidity) in all caves, which generally reflects the surface climate. Groundwater and surface water geochemistry is similar across the region (except slight modification by local lithological variations) and modern drip water isotope data fall close to regional Meteoric Water Line, but speleothems further from equilibrium. Holocene and modern speleothems from these caves give high-resolution climate records, implying that the Mechara caves provide a suitable setting for the deposition of annually laminated speleothems that could record surface climate variability in a region where rainfall is sensitive to both the strength of the intertropical convergence zone as well as Indian Monsoon variability.


A high-resolution spatial survey of cave air carbon dioxide concentrations in Scoska Cave (North Yorkshire, UK): implications for calcite deposition and re-dissolution, 2010, Whitaker, Tom, Daniel Jones, James U L Baldini And Alex J Baker
Carbon dioxide concentration variability in caves has implications for palaeoclimatic research involving stalagmites, the conservation of cave art, condensation corrosion, and safety during cave exploration. Here we present a high-resolution spatial survey of cave air carbon dioxide partial pressure (PCO2) in the 1.5km Scoska Cave system in North Yorkshire, UK, constructed using measurements taken during the interval of July 1 to July 5, 2008. According to the spatial P-CO2 survey, 76% of the cave air P-CO2 increase occurred within the first ~50 metres; consequently the P-CO2 gradient throughout the rest of the cave was slight. As is the case in other caves, this suggests that a 'front' exists at this site between high P-CO2 cave air and low P-CO2 outside air, where the P-CO2 increases dramatically over a short distance. Temperature data support this interpretation. This CO2 'front' is thought to represent the farthest point reached by large-scale advection of air out of the cave, and its position is hypothesized to fluctuate depending on atmospheric conditions. Thus, distinct P-CO2 trends characterize sections of the Scoska Cave system, which result in spatial variability in calcite deposition and redissolution. Modelled stalagmite growth rates vary between negligible and 0.21 mm yr-1, depending on unconstrained drip water [Ca2+] values and cave atmosphere P-CO2. Assuming constant drip water [Ca2+], optimum calcite deposition occurs near to the cave entrance, where ventilation and advection reduce P-CO2 levels most effectively. However, calcite precipitation on the roof of the cave may partially control the [Ca2+] of drip water that reaches the floor, so although the link between overall calcite deposition (i.e., on the roof and the floor) and P-CO2 appears robust, the effect of variable cave air P-CO2 on stalagmite growth rates requires more research. These calculations suggest that calcite precipitation rates in different areas of Scoska Cave may differ due to local P-CO2 and temperature variability, highlighting the benefits of thoroughly understanding site-specific cave environmental factors prior to the interpretation of stalagmite-based palaeoclimate records.

Location, Location, Location! Lava Caves on Mars for Habitat, Resources, and the Search for Life, 2010, Boston, Penelope J.

Over the course of humanity's history as a species, the use of caves, rock shelters, and other natural geological features has played an important role in our survival and cultural development. We suggest that the use of such natural features in future human exploration of Mars and Earth's moon could be a timely and practical solution to a number of potential dilemmas presented by the extreme and challenging nature of the environments on these bodies. Lava tubes, other caves, cavities, and canyon overhangs that are being identified on other planets are sites of intense scientific interest for geology, atmospheric climate records, and potentially biology. They may offer easier subsurface access for direct exploration and drilling, and could provide extractable minerals, gases, and ices. In the past few years, examples of such structures on Mars, the Moon, and potentially other bodies have increasingly come to light. Thus, the real estate is out there waiting for us to modify it for our exploration missions. The present Martian surface environment is extremely cold, dry, chemically active, and high in both ultraviolet and ionizing radiation. Galactic Cosmic Radiation (GCR) and episodic waves of high energy particles from solar proton events (SPE) necessitate the provision of robust radiation protection for habitats, workspaces, vehicles, and personal space suits. The mass penalty of providing this is a major driver in our consideration of the use of natural rock mass for radiation protection for habitats and workspaces, arguably the most massive components of an integrated human exploration equipment suite. Planetary protection considerations emerging from recent studies advocate a localization and zoning of degrees of human impact, much like that being implemented in the Antarctic as Special Regions. Containment of the primary human habitation and work activities within the confines of a subsurface habitat are highly consistent with these new approaches to Planetary Protection forward contamination. To begin to think about caves in the extraterrestrial exploration context, we have developed the notion of a complete, functioning subsurface habitat system. A suite of relatively low technology modifications to caves to improve habitability and safety are suggested. This system can integrate a spectrum of missions from both robotic precursors to human expeditionary missions and ultimately colonization.


NALPS: a precisely dated European climate record 12060 ka, 2011, Boch R. Cheng H. , Spotl C. , Edwards R. L. , Wang X. , Hauselmann Ph.

Accurate and precise chronologies are essential in understanding the rapid and recurrent climate variations of the Last Glacial – known as Dansgaard-Oeschger (D-O) events – found in the Greenland ice cores and other climate archives. The existing chronological uncertainties during the Last Glacial, however, are still large. Radiometric age data and stable isotopic signals from speleothems are promising to improve the absolute chronology. We present a record of several precisely dated stalagmites from caves located at the northern rim of the Alps (NALPS), a region that favours comparison with the climate in Greenland. The record covers most of the interval from 120 to 60 ka at an average temporal resolution of 2 to 22 yr and 2_-age uncertainties of ca. 200 to 500 yr. The rapid and large oxygen isotope shifts of 1 to 4.5‰ occurred within decades to centuries and strongly mimic the Greenland D-O pattern. Compared to the updated Greenland ice-core timescale (GICC05modelext) the NALPS record confirms the timing of rapid warming and cooling transitions between 118 and 106 ka, but suggests younger ages for D-O events between 106 and 60 ka. As an exception, the timing of the rapid transitions into and out of the stadial following GI 22 is earlier in NALPS than in the Greenland ice-core timescale. In addition, there is a discrepancy in the duration of this stadial between the icecore and the stalagmite chronology (ca. 2900 vs. 3650 yr). The short-lived D-O events 18 and 18.1 are not recorded in NALPS, provoking questions with regard to the nature and the regional expression of these events. NALPS resolves recurrent short-lived climate changes within the cold Greenland stadial and warm interstadial successions, i.e. abrupt warming events preceding GI 21 and 23 (precursor-type events) and at the end of GI 21 and 25 (rebound-type events), as well as intermittent cooling events during GI 22 and 24. Such superimposed events have not yet been documented outside Greenland. 


NALPS: a precisely dated European climate record 12060 ka, 2011, Boch R. , Cheng H. , Spotl C. , Edwards R. L. , Wang X. , Hauselmann Ph.

Accurate and precise chronologies are essential in understanding the rapid and recurrent climate variations of the Last Glacial – known as Dansgaard-Oeschger (D-O) events – found in the Greenland ice cores and other climate archives. The existing chronological uncertainties during the Last Glacial, however, are still large. Radiometric age data and stable isotopic signals from speleothems are promising to improve the absolute chronology. We present a record of several precisely dated stalagmites from caves located at the northern rim of the Alps (NALPS), a region that favours comparison with the climate in Greenland. The record covers most of the interval from 120 to 60 ka at an average temporal resolution of 2 to 22 yr and 2_-age uncertainties of ca. 200 to 500 yr. The rapid and large oxygen isotope shifts of 1 to 4.5‰ occurred within decades to centuries and strongly mimic the Greenland D-O pattern. Compared to the updated Greenland ice-core timescale (GICC05modelext) the NALPS record confirms the timing of rapid warming and cooling transitions between 118 and 106 ka, but suggests younger ages for D-O events between 106 and 60 ka. As an exception, the timing of the rapid transitions into and out of the stadial following GI 22 is earlier in NALPS than in the Greenland ice-core timescale. In addition, there is a discrepancy in the duration of this stadial between the icecore and the stalagmite chronology (ca. 2900 vs. 3650 yr). The short-lived D-O events 18 and 18.1 are not recorded in NALPS, provoking questions with regard to the nature and the regional expression of these events. NALPS resolves recurrent short-lived climate changes within the cold Greenland stadial and warm interstadial successions, i.e. abrupt warming events preceding GI 21 and 23 (precursor-type events) and at the end of GI 21 and 25 (rebound-type events), as well as intermittent cooling events during GI 22 and 24. Such superimposed events have not yet been documented outside Greenland.

 


Paleoclimate Records from Speleothems, 2012, Polyak Victor J. , Denniston Rhawn F.

Speleothems, mainly stalagmites, are yielding continuous, high-resolution records of past climate. Because calcite in these speleothems can be dated with exceptional accuracy, these records are matching and in some cases exceeding records from lakes, trees, glaciers, and oceans in their importance, and are providing remarkable detail about regional and global climate change history. Multiple records are offered and discussed in this article and show the significance of caves to the field of paleoclimatology.


The climatic cyclicity in semiarid-arid central Asia over the past 500,000 years, 2012, Cheng H. , Zhang P. Z. , Sptl C. , Edwards R. L. , Cai Y. J. , Zhang D. Z. , Sang W. C. , Tan M. , An Z. S.

Central Asia is currently a semiarid-arid region, dominated by the Westerlies. It is important to understand mechanisms of climate and precipitation changes here, as water availability in the region is crucial today and in the future. High-resolution, absolutely-dated oxygen isotope (d18O) records of stalagmites from Kesang Cave characterize a dynamic precipitation history over most of the past 500,000 years. This record demonstrates, for the first time, that climate change in the region exhibits a processional rhythm with abrupt inceptions of low d18O speleothem growth at times of high Northern Hemisphere summer insolation followed by gradual d18O increases that track decreases of insolation. These observations and interpretations contrast with the interpretation of nearby, but higher elevation ice core records. The absolutely-dated cave d18O shifts can be used to correlate the regional climate variability by providing chronological marks. Combined with other paleoclimate records, the Kesang observations suggest that possible incursions of Asian summer monsoon rainfall or related moisture into the Kesang site and/or adjacent areas during the high insolation times may play an important role in changing orbital-scale hydrology of the region. based on our record, arid climate will prevail in this region for the next several millennia, providing that anthropogenic effects do not supersede natural processes.


A model for the formation of layered soda-straw stalactites, 2013, Paul Bence, Drysdale R. , Green Helen, Woodhead Jon, Hellstrom John, Eberhard Rolan

Climate records based upon instrumental data such as rainfall measurements are usually only available for approximately the last 150 years at most. To fully investigate decadal-scale climate variation, however, these records must be extended by the use of climate proxies. Soda-straw stalactites (straws) are a previously under-utilised potential source of such data. In this contribution we investigate the structure and formation of straws and look at some issues that may affect the reliability of straw-based palaeoclimate records. We use laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) trace element analysis to document surface contamination features that have the potential to obscure annual trace element variations, and develop a method to reveal the underlying layering. We also use LA- ICP-MS to map the two-dimensional trace element distribution in straws. These maps reveal straw-layer geometry, in which layers are widest at the outside edge of the straw, narrowing and becoming almost parallel on the interior of the straw.

Based upon these observations, we present a model for the formation of straws of this type, where rapid degassing of CO2 from the drip extending below the straw forms the wider outer layers. Summers are defined by increased layer widths and higher trace element contents relative to winter layers. In palaeoclimate studies, where such annual variations can be used to construct time-lines, we suggest that, ideally, the outside surface of the straw be analysed where the trace element content difference is greatest and layering is widest.

The terminal phase of one straw (FC-02) shows decreasing layer widths and increased trace element contents. These features may also be representative of soda-straw responses to drought-induced decreases in percolation water.


Layer-bounding surfaces in stalagmites as keys to better paleoclimatological histories and chronologies, 2013, Railsback L. B. , Akers P. D. , Wang L. , Holdridge G. A. , Riavo Voarintsoa N.

Petrographic recognition of layer-bounding surfaces in stalagmites offers an important tool in constructing paleoclimate records. Previous petrographic efforts have examined thickness of layers (a possible proxy for annual rainfall) and alternation of layers in couplets (a possible indicator of seasonality). Layer-bounding surfaces, in contrast, delimit series of layers and represent periods of non-deposition, either because of exceptionally wet or exceptionally dry conditions.

Two types of layer-bounding surfaces can be recognized according to explicitly defined petrographic criteria. Type E layer-bounding surfaces are surfaces at which layers have been truncated or eroded at the crest of a stalagmite. Keys to their recognition include irregular termination of layers otherwise present on the stalagmite’s flank, dissolutional cavities, and coatings of non-carbonate detrital materials. Type E surfaces are interpreted to represent wet periods during which drip water became so undersaturated as to dissolve pre-existing stalagmite layers, and thus they necessarily represent hiatuses in the stalagmite record. Type L layer-bounding surfaces are surfaces below which layers become thinner upward and/or layers have lesser lateral extent upward, so that the stalagmite’s layer-specific width decreases. They are thus surfaces of lessened deposition and are interpreted to represent drier conditions in which drip rate slowed so much that little deposition occurred. A Type L surface may, but does not necessarily, represent a hiatus in deposition. However, radiometric age data show that Type L surfaces commonly represent significant hiatuses.

These surfaces are significant to paleoclimate research both for their implications regarding climate change (exceptionally wet or dry conditions) and in construction of chronologies in which other data, such as stable isotope ratios, are placed. With regard to climate change, recognition of these surfaces provides paleoclimatological information that can complement or even substitute for geochemical proxies. With regard to chronologies, recognition of layer- bounding surfaces allows correct placement of hiatuses in chronologies and thus correct placement of geochemical data in time series. Attention to changing thickness of annual layers and thus to accumulation rate can also refine a chronology. A chronology constructed with attention to layer-bounding surfaces and to changing layer thickness is much more accurate than a chronology in which hiatuses are not recognized at such surfaces.


Results 16 to 29 of 29
You probably didn't submit anything to search for