Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That accessory mineral is mineral constituents of a rock occurring in very small amounts [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for tomography (Keyword) returned 29 results for the whole karstbase:
Showing 16 to 29 of 29
DOLINE FILLS - CASE STUDY OF THE FAVERGHERA PLATEAU (VENETIAN PRE-ALPS, ITALY), 2009, Sauro Ugo, Ferrarese Francesco, Francese Roberto, Miola Antonella, Mozzi Paolo, Rondo Gualtiero Quario, Trombino Luca & Valentini Gianna
The sedimentary fills of two dolines in the Faverghera plateau in the Venetian Pre-Alps, south of Belluno, have been investigated. This small plateau is a sub-horizontal surface about 0.5 km2 wide, located on the northeastern slope of Mt. Faverghera (1640 m a.s.l.) hosting nearly 40 karst dolines partially filled by periglacial slope deposits. Topographic survey, electric resistivity tomography (ERT), soil and pollen analyses have been carried on. The structure of the dolines and the characters of the filling deposits indicate that the evolution of these forms has been controlled by the alternation of di*erent climatic and environmental conditions during the Pleistocene. The results indicate that the dolines are filters for the sediments, more than good traps, archiving only some of the climatic and environmental changes.

Contributions of geophysical techniques to the exploration of the Molnár János Cave (Budapest, Hungary), 2010, Surá, Nyi Gergely, Dombrá, Di Endre, Leé, LŐ, Ssy Szabolcs

Located in the centre of the Pannonian, one of the hottest basins in Europe with high average heat flow values, Hungary has long been famous for hot water springs and frequent cave occurrences. The Molnár János Cave, an active thermokarstic cave, belonging to the Buda Hills karst system, lies beneath a highly populated district of Budapest. Its large passages are almost completely filled by lukewarm water. Only the upper part of its largest known chamber rises above the water level, which offers an excellent site to examine recent cave generation processes. However, hitherto, no dry subsurface gateway existed towards this chamber; it was only accessible underwater. In this paper, we present the results of various geophysical investigations including GPR, magnetic and seismic methods, carried out in a close cooperation between geophysicists and speleologists. The aim of the measurements was to determine the precise position of the hall relative to a nearby drift. Based upon the successful seismic survey and first break analysis, a precise and efficient boring could be designed to realise the connection. Finally, a passage between the two cavities has been established and, thus, the chamber of the cave is now accessible to the whole scientific community.


Determining Geophysical Properties of a Near-Surface Cave through Integrated Microgravity Vertical Gradient and Electrical Resistivity Tomography, 2011, Gambetta M. , Armadillo E. , Carmisciano C. , Stefanelli P. , Cocchi L. , Caratori Tontini F.

Vertical-gradient microgravity and electrical-resistivity tomography geophysical surveys were performed over a shallow cave in the Italian Armetta Mountain karst area, close to the Liguria-Piedmont watershed. The aim of this study was to test the geophysical response of a known shallow cave. The shallowest portion of the cave exhibits narrow passages and, at about 30 meters below the entrance, a fossil meander linking two large chambers, the target of the geophysical survey. The integrated results of the two surveys show a clear geophysical response to the cave. The surveys exhibited high resistivity values and a negative gravity anomaly over the large cave passages. This work confirms the ability of these geophysical techniques to give the precise location of the voids, even in complex environments. The application of these techniques can be successful for site surveying where the presence of hollows may be expected.


The Dead Sea sinkhole hazard: Geophysical assessment of salt dissolution and collapse, 2011, Frumkin Amos, Ezersky Michael, Alzoubi Abdallah, Akkawi Emad, Abueladas Abdelrahman

A geophysical approach is presented for analyzing processes of subsurface salt dissolution and associated sinkhole hazard along the Dead Sea. The implemented methods include Seismic Refraction (SRFR), Transient Electromagnetic Method (TEM), Electric Resistivity Tomography (ERT), and Ground Penetration Radar (GPR). The combination of these methods allows the delineation of the salt layer boundaries, estimating its porosity distribution, finding cavities within the salt layer, and identifying deformations in the overlying sediments. This approach is shown to be useful for anticipating the occurrence of specific sinkholes, as demonstrated on both shores of the Dead Sea. These sinkholes are observed mainly along the edge of a salt layer deposited during the latest Pleistocene, when Lake Lisan receded to later become the Dead Sea. This salt layer is dissolved by aggressive water flowing from adjacent and underlying aquifers which drain to the Dead Sea. Sinkhole formation is accelerating today due to the rapid fall of the Dead Sea levels during the last 30 years, caused by anthropogenic use of its water.


An electrical resistivity imaging-based strategy to enable site-scale planning over covered palaeokarst features in the Tournaisis area (Belgium), 2012, Kaufmann O. , Deceuster J. , Quinif Y.

Since the beginning of the 20th century, more than 150 sinkhole occurrences, mainly dropout (or covercollapse)sinkholes, have been reported in the Tournaisis area (south-eastern Belgium). Land-use planning in such a context has to take into account hazards linked with sinkhole subsidence and collapse. Management maps, drawn at a regional scale, point out zones where karstic risks have to be taken into account when dealing with infrastructure or building projects. However, karst hazard is highly variable in three dimensions at the local scale. Therefore, for such purposes, an accurate methodology is needed to detect and delineate covered karst features, especially when located in urbanized areas. As geophysical investigations are sensitive to contrasts in physical properties of soils, these methods can be useful to detect such targets. The specific karstic context encountered in the Tournaisis area strongly guides the choice of investigation techniques. Electrical resistivity imaging (ERI) methods were tested on a wellknown site where dropout sinkholes occurred formerly. This site was also studied using static cone penetration tests (CPT) and boreholes. A 3D inverted resistivity model was computed based on the 2D ERI models obtained after inversion. Resistivity profiles were extracted at each CPT location and compared to geotechnical results to determine an empirical and site-specific resistivity law that allows discrimination between weathered zones and sound limestone. Performance tests were conducted to evaluate the potential of the proposed methodology for two typical engineering problems based on two current hypotheses. Borehole data were used as ground truth. Similar performance tests were also computed using the CPT depth to bedrock model. The results of these performance tests are compared and discussed. Finally, an ERI-based investigation strategy is proposed to assess karst hazard in palaeokarstic context, such as encountered in the Tournaisis area, at the scale needed for building and infrastructure purposes. 


2D and 3D imaging of the metamorphic carbonates at Omalos plateau/polje, Crete, Greece by employing independent and joint inversion on resistivity and seismic data, 2012, Hamdan Hamdan, Economou Nikos, Kritikakis Giorgos, Andronikidis Nikos, Manoutsoglou Emmanuil, Vafidis Antonis, Pangratis Pangratis, Apostolidou Georgina

A geophysical survey carried out at Omalos plateau in Chania, Western Crete, Greece employed seismic as well as electrical tomography methods in order to image karstic structures and the metamorphic carbonates (Tripali unit and Plattenkalk group) which are covered by post-Mesozoic deposits (terra rossa, clays, sands and gravels). The geoelectrical sections image the metamorphic carbonates which exhibit a highly irregular relief. At the central part of the plateau the thickness of post-Mesozoic deposits (terra rossa, clays, sands and gravels) ranges from 40-130 m. A 3D resistivity image was generated by inverting resistivity data collected on a grid to the south west at the Omalos plateau. The 3D resistivity image delineated a karstic structure at a depth of 25 to 55 m. On the same grid the depth to the top of the karstified carbonates ranges from 25-70 m. This is also verified on the resistivity sections and seismic velocity sections along lines 5 and 7 of the above mentioned grid which are derived from the cross-gradients joint inversion.


Geoelectrical Characterization of Sulphate Rocks, 2012, Guinea Maysounave, Ander

Gypsum rocks are widely exploited in the world as industrial minerals. The purity of the gypsum rocks (percentage in gypsum mineral –CaSO4•2H2O- in the whole rock) is a critical factor to evaluate the potential exploitability of a gypsum deposit. It is considered than purities higher than 80% in gypsum are required to be economically profitable. Gypsum deposits have been studied with geoelectrical methods; a direct relationship between the electrical resistivity values of the gypsum rocks and its lithological composition has been established, with the presence of lutites being the main controlling factor in the geoelectrical response of the deposit. This phenomenon has been quantified by means of a combination of theoretical calculations, laboratory measurements and field data acquisition. A geoelectrical classification of gypsum rocks defining three types of gypsum rocks has been elaborated. Anhydrite (CaSO4) is frequently found in gypsum quarries and in no-outcropping sulphates. Because of its highest hardness than gypsum it supposes a problem for the extraction of gypsum; the fronts of the quarries in which anhydrite is found are stopped at the moment when it appears. The electrical properties of calcium sulphates have been studied by means of geoelectrical methods. The conductivity of crystals has been tested in laboratory. A direct relationship between the electrical conductivity values of the calcium sulphate rocks and its lithological composition has been established being the lutitic matrix the main controlling factor when it is percolant (connected at long range). When the rock is matrix dominant, the electrical resistivity trend is bond to the Hashin-Shtrikman lower bound for multiphase systems. On the other hand, when the rock is calcium sulphate dominant the trend shows the one of the Hashin-Shtrikman upper bound. A geoelectrical classification for calcium sulphate rocks has been elaborated. With this classification it is possible to differentiate between calcium sulphate rocks with different composition according to their electrical resistivity value. Glauberite (Na2Ca(SO4)2) is nowadays exploited as industrial mineral. Glauberite rocks usually have high lutite content in their composition, together with other evaporictic minerals as gypsum, anhydrite or halite among others. There is no reference to the conductivity of glauberite rocks in the bibliography, but due to their impurity it is expected to observe values as the observed for other sulphates in the matrix domain (less than 55% in purity). Two areas of the Ebro river basin (the Zaragoza and La Rioja sectors) have been studied by means of electrical resistivity tomography profiles, in which glauberite has been found in boreholes. As example of application for the study of sulphate deposits, an electrical resistivity tomography survey has been carried out in the Pira Gypsum member (SE of Catalan margin of the Tertiary Ebro Basin, Spain). Additionally, a continuous coring drill was performed in order to support the study. Electrical imaging has been successfully applied to identify the gypsum deposits interlayered in lutite units. Another resistivity survey has been carried out in an active gypsum quarry in the Gelsa Gypsum unit (Zaragoza, N Spain). During the extraction of the rock, the most important parameters to know are the purity changes in the deposit. Sudden changes in the purity make the processing of the raw material less profitable. The performed profiles have shown different gypsum layers from which the purest layers have been identified. Electrical resistivity tomography lines are useful in prospection of gypsum deposits. However, electrical imaging prospection should be supported by an accurate petrological study of the deposits, in order to properly interpret the resistivity profiles.


Evaluation of permeability and non-Darcy flow in vuggy macroporous limestone aquifer samples with lattice Boltzmann methods, 2013, Sukop M. C. , Huang H. , Alvarez P. F. , Variano E. A. , Cunningham K. J.

Lattice Boltzmann flow simulations provide a physics-based means of estimating intrinsic permeability from pore structure and accounting for inertial flow that leads to departures from Darcy’s law. Simulations were used to compute intrinsic permeability where standard measurement methods may fail and to provide better understanding of departures from Darcy’s law under field conditions. Simulations also investigated resolution issues. Computed tomography (CT) images were acquired at 0.8 mm interscan spacing for seven samples characterized by centimeter-scale biogenic vuggy macroporosity from the extremely transmissive sole-source carbonate karst Biscayne aquifer in southeastern Florida. Samples were as large as 0.3 m in length; 7–9 cm-scale-length subsamples were used for lattice Boltzmann computations. Macroporosity of the subsamples was as high as 81%. Matrix porosity was ignored in the simulations. Non-Darcy behavior led to a twofold reduction in apparent hydraulic conductivity as an applied hydraulic gradient increased to levels observed at regional scale within the Biscayne aquifer; larger reductions are expected under higher gradients near wells and canals. Thus, inertial flows and departures from Darcy’s law may occur under field conditions. Changes in apparent hydraulic conductivity with changes in head gradient computed with the lattice Boltzmann model closely fit the Darcy-Forchheimer equation allowing estimation of the Forchheimer parameter. CT-scan resolution appeared adequate to capture intrinsic permeability; however, departures from Darcy behavior were less detectable as resolution coarsened.


Electrical Tomography Applied to the Detection of Subsurface Cavities, 2013, Martineslpez J. , Rey J. , Dueas J. , Hidalgo C. , Benavente J.

We have analyzed the geoelectric response produced by three cavities cut into different geological substrata of granite, phyllite, and sandstone that had previously been characterized by direct methods. We also examined a mining void excavated in granite. In each case, we applied three different geoelectric arrays (Wenner-Schlumberger, Wenner and dipole-dipole) and several inter-electrode spacings. The survey results suggest that electrical resistivity tomography is a viable geophysical tool for the detection and monitoring of mining voids and other subsurface cavities. The results vary depending on a wide range of factors, such as the depth and diameter of the cavity, the multi-electrode array used, the inter-electrode spacing, the geological model, and the density of the data. The resolution capacity of the Wenner- Schlumberger array for the detection of these cavities was greater than that of the Wenner array and slightly better than the dipole-dipole. There is a direct relationship between inter-electrode spacing and diameter of the cavity. In general, we observed a loss of resolution as the distance between the electrodes increased. The most efficient detection was achieved when the inter-electrodes distance was less than or equal to the diameter of the cavity itself. In addition, cavity detection became increasingly less precise with its depth beneath the surface. Cavities with a radius of about 1.5 m were located by both the Wenner- Schlumberger method and the dipole-dipole at depths of more than 4.6 m, which means that prospecting can be carried out at depths 3 times the radius of the cavity.


A laboratory study of tracer tomography, 2013, Brauchler R. , Bhm G. , Leven P. , Dietrich C. , Sauter M.

A tracer tomographic laboratory study was performed with consolidated fractured rock in three-dimensional space. The investigated fractured sandstone sample was characterized by significant matrix permeability. The laboratory transport experiments were conducted using gas-flow and gas-tracer transport techniques that enable the generation of various flow-field patterns via adjustable boundary conditions within a short experimental time period. In total, 72 gas-tracer (helium) tests were performed by systematically changing the injection and monitoring configuration after each test. For the inversion of the tracer breakthrough curves an inversion scheme was applied, based on the transformation of the governing transport equation into a form of the eikonal equation. The reliability of the inversion results was assessed with singular value decomposition of the trajectory density matrix. The applied inversion technique allowed for the three-dimensional reconstruction of the interstitial velocity with a high resolution. The three-dimensional interstitial velocity distribution shows clearly that the transport is dominated by the matrix while the fractures show no apparent influence on the transport responses.


Seismic study of the low-permeability volume in southern France karst systems, 2013, Galibert P. Y. , Valois R. , Mendes M. , Gurin R.

Locating groundwater in deep-seated karst aquifers is inherently difficult. With seismic methods, we studied the upper epikarst and the underneath low-permeability volume (LPV) of several karst systems located in the southern Quercy and Larzac regions of France and found that refraction tomography was effective only in the epikarst and not in the LPV. We evaluated a 3D case study using a combination of surface records and downhole receivers to overcome this limitation. This 3D approach unveiled a set of elongated furrows at the base of the epikarst and identified heterogeneities deep inside the LPV that may represent high-permeability preferred pathways for water inside the karst. To achieve the same result when no borehole was available, we studied seismic amplitudes of the wavefield, recognizing that wave-induced fluid flow in low-permeability carbonates is a driving mechanism of seismic attenuation. We developed a workflow describing the heterogeneity of the LPV with spectral attributes derived from surface-consistent decomposition principles, and we validated its effectiveness at benchmark locations. We applied this workflow to the 3D study and found a low-amplitude signal area at depth; we interpreted this anomaly as a water-saturated body perched above the aquifer.


Sinkholes, pit craters, and small calderas: Analog models of depletion-induced collapse analyzed by computed X-ray microtomography, 2014,

Volumetric depletion of a subsurface body commonly results in the collapse of overburden and the formation of enclosed topographic depressions. Such depressions are termed sinkholes in karst terrains and pit craters or collapse calderas in volcanic terrains. This paper reports the first use of computed X-ray microtomography (?CT) to image analog models of small-scale (~< 2 km diameter), high-cohesion, overburden collapse induced by depletion of a near-cylindrical (“stock-like”) body. Time-lapse radiography enabled quantitative monitoring of the evolution of collapse structure, velocity, and volume. Moreover, ?CT scanning enabled non-destructive visualization of the final collapse volumes and fault geometries in three dimensions. The results illustrate two end-member scenarios: (1) near-continuous collapse into the depleting body; and (2) near-instantaneous collapse into a subsurface cavity formed above the depleting body. Even within near-continuously collapsing columns, subsidence rates vary spatially and temporally, with incremental accelerations. The highest subsidence rates occur before and immediately after a surface depression is formed. In both scenarios, the collapsing overburden column undergoes a marked volumetric expansion, such that the volume of subsurface depletion substantially exceeds that of the resulting topographic depression. In the karst context, this effect is termed “bulking”, and our results indicate that it may occur not only at the onset of collapse but also during progressive subsidence. In the volcanic context, bulking of magma reservoir overburden rock may at least partially explain why the volume of magma erupted commonly exceeds that of the surface depression.


Influence of the f low rate on dissolution and precipitation features during percolation of CO 2 - rich sulfate solutions through fractured limestone samples , 2015,

Calcited issolution and  gypsum precipitation is expected to occur  when injecting CO2  in  a limestone reservoir with sulfate - rich resident brine. If the reservoir is fractured, These reactions will take place mainly in the fractures, which serve as preferential paths for fluid  flow. As a consequence, the geometry of the fractures will vary leading to changes  in their hydraulic and transport properties. In this study, a set of percolation  experiments  which  consisted of injecting CO 2 - rich solutions through fractured  limestone  cores were performed under P  =  150 bar and  T  =  60  ºC .  Flow rate s ranging from 0.2 to 60 mL/ h and sulfate - rich and sulfate - free solutions  were used. Variation in fracture volume induced by calcite dissolution and  gypsum precipitation was measured by X - ray computed microtomography  (XCMT) and aqueous chemistry. An increase in flow rate led to  an increase in  volume of dissolved limestone per unit of  time , which indicated that the calcite dissolution rate in the fracture  was transport  controlled. Moreover, the dissolution pattern varied from face dissolution to wormhole formation  and uniform dissolution by increasing the flow rate (i.e.,  Pefrom 1 to 346 ). Fracture permeability always increased and depended on the type of dissolution pattern.


Hidden sinkholes and karst cavities in the travertine plateau of a highly-populated geothermal seismic territory (Tivoli, central Italy), 2015,

Sinkholes and other karst structures in settled carbonate lands can be a significant source of hazard for humans and human works. Acque Albule, the study area of this work, is a Plio-Pleistocene basin near Rome, central Italy, superficially filled by a large and thick deposit of late Pleistocene thermogene travertine. Human activities blanket large portions of the flat territory covering most evidence from geological surface processes and potentially inducing scientists and public officials to underestimate some natural hazards including those connected with sinkholes. To contribute to the proper assessment of these hazards, a geomorphologic study of the basin was performed using digital elevation models (DEMs), recent aerial photographs, and field surveys. Historical material such as old aerial photographs and past geomorphologic studies both pre-dating the most part of quarrying and village building was also used together with memories of the elderly population. This preliminary study pointed out the presence of numerous potentially active sinkholes that are at present largely masked by either quarrying or overbuilding. Where this first study pointed out the apparent absence of sinkholes in areas characterized by high density of buildings, a detailed subsurface study was performed using properly-calibrated electrical resistivity tomography (ERT) and dynamic penetration measurements (DPSH), together with some borehole logs made available from the local municipality. This second study highlighted the presence of sinkholes and caves that are, this time, substantially hidden to the resolution of standard methods and materials such as aerial photographs, DEMs, and field surveys. Active sinkhole subsidence in the Acque Albule Basin may explain, at least in part, the frequent damages that affect numerous buildings in the area. The main conclusion from this study is that the mitigation of sinkhole hazard in highly populated areas has to pass through a thorough search of (hidden) sinkholes that can be masked by the Anthropocenic molding and blanketing of the territory. For these purposes, data from historical (pre-Anthropocene) documents as well as, where possible, subsurface investigations are fundamental.


Results 16 to 29 of 29
You probably didn't submit anything to search for