Cueva de Villa Luz (a.k.a. Cueva de las Sardinas) in Tabasco, Mexico, is a stream cave with over a dozen H2S-rich springs rising from the floor. Oxidation of the H2S in the stream results in abundant, suspended elemental sulfur in the stream, which is white and nearly opaque. Hydrogen sulfide concentrations in the cave atmosphere fluctuate rapidly and often exceed U.S. government tolerance levels. Pulses of elevated carbon monoxide and depleted oxygen levels also occasionally enter the cave.
Active speleogenesis occurs in this cave, which is forming in a small block of Lower Cretaceous limestone adjacent to a fault. Atmospheric hydrogen sulfide combines with oxygen and water to form sulfuric acid, probably through both biotic and abiotic reactions. The sulfuric acid dissolves the limestone bedrock and forms gypsum, which is readily removed by active stream flow. In addition, carbon dioxide from the reaction as well as the spring water and cave atmosphere combines with water. The resultant carbonic acid also dissolves the limestone bedrock.
A robust and diverse ecosystem thrives within the cave. Abundant, chemoautotrophic microbial colonies are ubiquitous and apparently act as the primary producers to the cave’s ecosystem. Microbial veils resembling soda straw stalactites, draperies, and “u-loops” suspended from the ceiling and walls of the cave produce drops of sulfuric acid with pH values of <0.5-3.0 ±0.1. Copious macroscopic invertebrates, particularly midges and spiders, eat the microbes or the organisms that graze on the microbes. A remarkably dense population of fish, Poecilia mexicana, fill most of the stream. The fish mostly eat bacteria and midges. Participants in an ancient, indigenous Zoque ceremony annually harvest the fish in the spring to provide food during the dry season.
Black coating of hard substrates by Mn and Fe oxides has long been reported from shallow, dark, submarine caves. However, these littoral metallic deposits have never been studied in detail, despite expected analogies with deep-sea polymetallic crusts. Submarine caves are characterized by darkness and low rates of exchanges with the open sea. Lack of primary production and confinement of inner water bodies result in marked oligotrophy and extremely reduced biomass, i.e. conditions close to those prevailing in deep-sea habitats. Field evidences suggested that the formation of Mn-Fe coatings was closely tied to these particular environmental conditions. The goal of this study was to examine the detailed features of Mn-Fe coatings from dark caves with different local conditions, and to try to identify the processes responsible for their deposition. Study sites and methods Three sublittoral, single-entrance, caves were sampled by scuba diving along the coasts of Provence (France, Mediterranean Sea) (fig. 1). The first site is a large karstic cave (Tremies Cave, 16 m depth at entrance floor, 60 m long; Marseille-Cassis area) with an ascending profile which results in a buffered thermal regime and markedly oligotrophic conditions due to warm water trapping in its upper part (fig. 1 and 2). Wall fragments were sampled at 30 m (medium confinement : zone B) and 60 in (strong confinement : zone C) from the cave entrance. The second site is a large tubular cavity open in conglomerate formations (3PP Cave, 15 m depth at entrance floor, 120 m long; La Ciotat) with a descending profile which results in relative permanence of winter temperatures within the inner parts, complex water circulation and presumed greater input of sedimented particles than in the preceding cave (fig.1 and 2). Wall samples were taken at 25 m, 70 in and 100 m from entrance. The third site is a small, horizontal, cave open in quartzite formations (Bagaud Cave, 7 in depth at entrance floor, about 10 m long; WNW of Port-Cros Island, bay of Hyeres). Sampling was performed on walls of a narrow corridor between an anterior room and a smaller inner room. A sporadic outflow of continental waters is located in the inner room. The samples were preserved in 50% ethylic alcohol or studied soon after their sampling. Before carbon coating and SEM examination, or microanalyses with SEM-associated spectrometers, they were treated in a 33% Chlorox solution and thereafter washed in demineralized water and dried. Micromorphology At low-medium magnification (<20,000), the aspect of coatings varies between caves and, especially, between inner-cave locations. All the described structures are made up of Mn and Fe oxides. In Tremies Cave, coatings of walls from zone B are composed of irregular erected constructions (height : 10s to 100s μm) formed by the aggregation of roughly ovoid primary concretions of about 10 μm (fig. 3). The surface of those primary concretions displays numerous lacunose to reticulate films (pores, about 0.5 μm in diameter, are often subrounded). Remnants of these films and organomorphic corpuscles occur also within the primary concretions (fig. 4). On younger substrates (broken wall exposed since 1970), primary concretions are poorly developed and no prominent construction is visible (fig. 5). In more confined conditions (zone C), the erected constructions of ancient coatings are smaller and less numerous than in zone B but are well individualized (fig. 6). In this zone: C, besides some remnants of lacunose to reticulate films (fig. 7), there is an appearance of filaments and ovoid corpuscles (height/width : 10-30/5-15 μm), which seem to be linked to filaments by a short stalk (fig. 8). In 3 PP Cave, at 25-70 m from entrance, wall coatings present porous heaps of primary concretions (fig. 9). The surface and the inside of the latter comprise remnants of lacunose to reticulate films that evoke those observed in Tremies Cave (fig. 10 and 11). On younger substrates (hard parts of sessile invertebrates), coatings are restricted to micrometric organomorphic corpuscles with some remnants of lacunose or fibrous films (fig. 12). At 100 in from the entrance, coatings are shaped by numerous erected constructions, more or less coalescing (fig. 13). Besides remnants of lacunose films, the primary concretions contain interlacing filaments (diameter : 0.2-0.3 μm) forming cords or veils (fig. 14). In Bagaud Cave, the primary concretions are aggregated in irregular heaps (fig. 15). Lacunose films are particularly frequent and tend to form three-dimensional mamillated structures that were not observed in the other caves (fig. 16). In particular, there is an appearance of tubular structures (fig. 17) and of numerous hemispheroidal structures (diameter : 4-5 μm) with an upper orifice (fig. 18 and 19). At higher magnification (20,000), whatever the cave and inner-cave location, the aspect of oxide deposits is rather smooth or, especially, microgranular (fig. 20). Mineral composition The composition of coatings is different between caves and according to their inner-cave location. In both large caves (Tremies and 3 PP), the Mn/Fe ratio increases with the distance from the cave entrance, i.e. when exchanges with the open sea diminish (fig. 21a). This trend is particularly clear in Tremies Cave, where the confinement gradient is strongly marked. Besides, the Mn/Fe ratio also seems to increase when films are present in the analysed volume (some cubic micrometers) (fig. 21b). In Bagaud Cave, the Mn/Fe ratio reaches high values despite the small size of this cave and its low confinement level. Discussion and conclusions SEM observations suggest that in each studied cave, the Mn-Fe coatings are biosedimentary deposits. Genesis of these deposits is assumed to result mainly from the replacement of biofilms (composed of cells and slime, i.e, of extracellular polymeric substance produced by microorganisms) generated by microbial populations colonizing the cave walls. Considering the darkness of the cave-locations, microbes consist mainly in bacteria, but fungi are probably responsible for the filaments and ovoids corpuscules (evoking sporocysts) occurring in innermost parts. Observations at different scales of the morphological features of oxide deposits reveal a structured organisation which varies along the strong environmental gradients (particularly the confinement level) that occur from the entrance to the innermost parts : erected constructions made up of primary concretions become more and more defined and acquire a pseudo-columnar shape. The aspect of biofilms appears to be controlled by the same environmental parameters. In open or relatively open environments, they frequently show a three-dimensional development (with frequent skullcape-like shapes), while in more confined conditions they exhibit a planar layout. These changes reflect either the adaptation of the slime-producing bacteria to the local trophic resources (correlated to the rate of exchange with the open sea) and water movements, or spatial replacement of taxa. It is assumed that slime (mainly composed of water and exopolysaccharides) induces a local increase of the concentration in dissolved Mn and acts as an ion exchange resin that allows the retention of Mn on the functional groups of EPS. These conditions promote the nucleation of Mn oxide crystallites in the slime. Then. the anionic character of Mn oxides in seawater, and their capacity to catalyse the oxydation of Mn2 to Mn4, allow the process to go on without any other biological intervention; thus, the process of crystal growth becomes possible. In caves where Mn is only supplied by seawater (Tremies and 3 PP), the average value of the Mn/Fe ratio of coatings is negatively correlated to the local availability of nutrients. This trend is probably linked to changes in the selectivity of slimes towards the processes of retention of cations, because this ratio is clearly influenced by the occurrence of biofilms. However, independently from trophic resources, the Mn/Fe ratio can be notably increased when additional Mn is provided by the seeping or flowing of continental waters (Bagaud Cave)