Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That pisanite is a cave mineral - (fe,cu)so4.7h2o [11].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for variables (Keyword) returned 59 results for the whole karstbase:
Showing 16 to 30 of 59
Limestone dissolution processes in beke doline Aggtelek National Park, Hungary, 1997, Zambo L. , Ford D. C. ,
Aggtelek National Park, Hungary, is a limestone karst upland characterized by karren, dolines and river caves. For a period of two years, climatic and carbonate dissolution variables were monitored at four depths in a 7.5 m shaft through the soil fill in the floor of a typical large (150m diameter) doline. Results are compared to other monitoring stations in shallow soils on side slopes. Runoff and groundwater flow are focused into the base of the doline soil fill, where moisture is maintained at 70-90 per cent field capacity and temperatures permit year-round production of soil CO2. The capacity to dissolve calcite (limestone) ranges from c. 3 g m(-2) per year beneath thin soils on the driest slopes to 17-30 g m(-2) per year in the top 1-2 m of doline till and at its base 5-7 m below.

Geochemical patterns in soils of the karst region, Croatia, 1997, Prohic E. , Hausberger G. , Davis J. C. ,
Soil samples were collected at 420 locations in a 5-km grid pattern in the Istria and Gorski Kotar areas of Croatia, and on the Croatian islands of Cres, Rab and Krk, in order to relate geochemical variation in the soils to underlying differences in geology, bedrock lithology, soil type, environment and natural versus anthropogenic influences. Specific objectives included assessment of possible agricultural and industrial sources of contamination, especially from airborne effluent emitted by a local power plant. The study also tested the adequacy of a fixed-depth soil sampling procedure developed for meager karstic soils. Although 40 geochemical variables were analyzed, only 15 elements and 5 radionuclides are common to all the sample locations. These elements can be divided into three groups: (1) those of mostly anthropogenic origin - Pb, V, Cu and Cr; (2) those of mixed origin - radionuclides and Zn; and (3) those of mostly geogene origin - Ba, Sr, Ti, Al, Na, Ca, Mg, Fe, Mn, Ni and Co. Variation in Pb shows a strong correlation with the pattern of road traffic in Istria. The distributions of Ca, Na and Mg in the flysch basins of southern Istria and Slovenia are clearly distinguishable from the distributions of these elements in the surrounding carbonate terrains, a consequence of differences in bedrock permeability, type of drainage and pH. The spatial pattern of Cs-137 from the Chernobyl nuclear power plant accident reflects almost exclusively the precipitation in Istria during the days immediately after the explosion. (C) 1997 Elsevier Science B.V

Spatial and Temporal Variations in the Dissolved Organic Carbon Concentrations in the Vadose Karst Waters of Marengo Cave, Indiana, 1998, Toth, V. A.
In order to better understand the organic content of microbands in speleothems, seasonal variations in the organic concentrations of vadose drip waters were examined in relation to climatic and environmental variables. Seasonal variations in the organic concentrations of the vadose waters were observed by documenting the fluctuations of Dissolved Organic Carbon (DOC) and its corresponding fluorescence. Tracer dye tests established that the larger drips depositing calcite in Marengo Cave were fed by waters with a short residence time. A strong seasonal variation in DOC concentrations and natural fluorescence was detected at quickly responding sites. Slow, constant drip sites displayed a weaker seasonality. Further investigation is required to distinguish low fluorescing DOC and to determine if the same fluorophors identified in the vadose water can be identified in the organics trapped in the recipient calcite. The overall conclusions are that fluorescence is well correlated with DOC when the fluorescence range is high but it is not a strong indicator of DOC at low fluorescence values; that the value of fluorescence as a predictor of DOC may vary significantly with individual sampling sites; and that the highest fluorescence values occur in springtime and the weakest in summer and fall.

Multivariate analysis of chemical-physical parameters to characterize and discriminate karstic waters, 1998, Barbieri P, Adami G, Reisenhofer E,
In the Karst near Trieste two contiguous, apparently similar, springs were sampled during autumnal and spring periods. Twelve chemical-physical parameters were monitored, with the purpose of determining the composition and verifying seasonal variations of the waters. The methodological approach for characterizing and discriminating karstic freshwaters, based on a multivariate analysis of the analytical data, as PCA (Principal Component Analysis) or EDA (Linear Discriminant Analysis), is alternative to intrusive methods based on chemical, radioactive or biological tracers. A discriminant model was proposed for these karstic waters, verifying the significance of the variables

Kinetics and mechanisms of precipitation of calcite as affected by P-CO2 and organic ligands at 25 degrees C, 1998, Lebron I. , Suarez D. L. ,
This study was conducted to develop a model for the precipitation rate of calcite under varying CO2 partial pressures and concentrations of dissolved organic carbon (DOG). Precipitation rates of calcite were measured in solutions with supersaturation values (Omega) between 1 and 20 and in the presence of 2 m(2)L(-1) of calcite. Experiments were run at partial pressures of CO2 (P-CO2) in the range of 0.035-10 kPa and DOC concentrations in the range of 0.02-3.50 mM. The effects of these two variables were quantified separately for the precipitation mechanisms of crystal growth and heterogeneous nucleation. We found an increase in precipitation rate (at constant Omega) when P-CO2 increased. For constant Omega, we also found a linear relationship between calcite precipitation rate and activity of CaHCO3, indicating that CaHCO3 species have an active role in the mechanism of calcite precipitation. These findings suggest that the increase in the precipitation rate with higher P-CO2 levels is likely caused by the increase in the negative charge on the calcite surface together with an increase in the activity of CaHCO3 species in solution. The mechanism of inhibition of calcite crystal growth by organic ligands has been shown to be surface coating of the crystals by DOG. The amount of DOC adsorbed on the surface of the calcite crystals follows a Langmuir isotherm for all the P-CO2 levels studied; however, the amount of DOC necessary to inhibit calcite precipitation increased. With increasing P-CO2, the negative charge on the crystal increases, which affects crystal growth, but also these increases in P-CO2 cause a decrease in the solution pH and increase in the ionic strength for constant Omega. Solution pH and ionic strength affect the structure and degree of dissociation of the organic functional groups, which in turn affects the and DOC concentration on the inhibition of crystal growth and heterogeneous nucleation. The effect of P-CO2 and DOC concentration on the precipitation rate of calcite is expressed in a precipitation rate model which reflects the contributions of crystal growth and heterogeneous nucleation. Copyright (C) 1998 Elsevier Science Ltd

Oxidation of organic matter in a karstic hydrologic unit supplied through stream sinks (Loiret, France), 1998, Alberic P, Lepiller M,
The aim of this paper is to appraise the ability of the oxidation of riverine organic matter in the control of limestone dissolution, in a karst network. Biogeochemical processes during infiltration of river water into an alluvial aquifer have already been described for an average flow velocity of 4-5 m d(-1) (Jacobs, L. A., von Gunten, H. R., Keil, R, and Kuslys, M. (1988) Geochemical changes along a river-groundwater infiltration flow path: Glattfelden, Switzerland. Geochim. Cosmochim. Acta 52, 2693-2706; Von Gunten, H. R., Karametaxas, G., Krahenbuhl, U., Kuslys, M., Giovanoli R., Hoehn E. and Keil R. (1991) Seasonal biogeochemical cycles in riverborne groundwater. Geochim. Cosmochim. Acta 55, 3597-3609; Bourg, A. C. M. and Bertin, C. (1993) Quantitative appraisal of biogeochemical chemical processes during the infiltration of river water into an alluvial aquifer. Environ. Sci. Technol. 27, 661-666). Karstic drainage networks, such as in the River Loire-Val d'Orleans hydrologic system (Fig. 1), make possible flow velocities up to 200 m h(-1 a) and provide convenient access to different water samples several tens of km apart, at both extremities of the hydrologic unit (Chery, J.-L. (1983) Etude hydrochimique d'un aquifere karstique alimente par perte de cours d'eau (la Loire): Le systeme des calcaires de Beauce sous le val d'Orleans. These, Universite d'Orleans; Livrozet, E. (1984) Influence des apports de la Loire sur la qualite bacteriologique et chimique de l'aquifere karstique du val d'Orleans. These, Universite d'Orleans). Recharge of the karstic aquifer occurs principally from influent waters from stream sinks, either through coarse alluvial deposits or directly from outcrops of the regional limestone bedrock (Calcaires de Beauce). Recharge by seepage waters From the local catchment basin is small (Zunino, C., Bonnet, M. and Lelong, F. (1980) Le Val d'Orleans: un exemple d'aquifere a alimentation laterale. C. R. somm. Soc. Geol. Fr. 5, 195-199; Gonzalez R. (1992) Etude de l'organisation et evaluation des echanges entre la Loire moyenne et l'aquifere des calcaires de Beauce. These, Universite d'Orleans) and negligible in summer. This karstic hydrologic: system is the largest in France in terms of flow (tens to hundreds of m(3)/s) and provides the main water resource of the city of Orleans. Chemical compositions of influent waters (River Loire) and effluent waters (spring of the river Loiret) were compared, in particular during floods in summer 1992 and 1993 (Figs 2-4). Variation of chloride in the River Loire during the stream rise can be used as an environmental tracer of the underground flow (Fig. 2). Short transit times of about 3 days are detectable (Fig, 2) which are consistent with earlier estimations obtained with chemical tracers (Ref. in Chery, J.-L. (1983) These, Universite d'Orleans). Depending on the hydrological regime of the river, organic carbon discharge ranges between 3-7 and 2-13 mg/l for dissolved and particulate matter respectively (Fig. 3). Eutrophic characteristics and high algal biomasses are found in the River Loire during low water (Lair, N. and Sargos, D. (1993) A 10 year study at four sites of the middle course of the River Loire. I - Patterns of change in hydrological, physical and chemical variables in relation to algal biomass. Hudroecol. Appl. 5, 1-27) together with more organic carbon rich suspended particulate matter than during floods (30-40 C-org % dry weight versus 5-10%). Amounts of total organic carbon and dissolved oxygen (Fig. 3) dramatically decrease during the underground transport, whereas conversely, dissolved calcium, alkalinity and inorganic carbon increase (Fig. 4). Anoxia of outflows map start in April. Dissolution of calcium carbonates along the influent path outweighs closed system calcite equilibrium of inflow river waters (Table 3). The impact of organic matter oxidation on calcite dissolution may be traced by variations of alkalinity and total carbonates in water. Following, Jacobs, L. A., von Gunten, H. R., Keil, R. and Kuslys, M. (1988) Geochemical changes along a river-groundwater infiltration flow path: Glattfelden, Switzerland. Geochim. Cosmochim. Acta 52, 2693-2706), results are shown graphically (Fig. 5). Extent of reactions is controlled by the consumption of dissolved O-2 and nitrate for organic matter oxidation and by the release of Ca2 for calcite dissolution (Table 2). The karstic network is considered to behave like a biological reactor not exchanging with the atmosphere, with steady inhabitant microbial communities (Mariotti A., Landreau A, and Simon B. (1988) N-15 isotope biogeochemisrry and natural denitrification process in groundwater: Application to the chalk aquifer of northern France. Geochim. Cosmochim. Acta 52, 1869-1878; Gounot, A.-M. (1991) Ecologie microbienne des eaux ei des sediments souterrains. Hydrogeologie, 239-248). Thus, energy requirements only are considered, not carbon assimilation. Moreover, there is no necessity to invoke any delay for nitrification enhancement, as observed elsewhere, after waste water discharge into the river (Chesterikoff, A., Garban, B., Billen, G. and Poulin, M. (1992) Inorganic nitrogen dynamics in the River Seine downstream from Paris (France). Biogeochem. 17, 147-164). Main microbial processes are assumed to be aerobic respiration, nitrification and denitrification. Reactions with iron and manganese, real but not quantitatively important, were neglected. Sulphate reduction and methane formation, certainly not active, were not considered. Denitrification, which is suggested by low nitrate and ammonium concentrations and anoxia in the outflow, is known to be rapid enough to be achieved in a short time (Dupain, S. (1992) Denitrification biologique heterotrophe appliquee au traitement des eaux d'alimentation: Conditions de fonclionnement et mise au point d'un procede. These, Universite Claude Bernard, Lyon). Reaction are somewhat arbitrary but conform to general acceptance (Morel, M. M. and Hering, J. G. (1993) Principles and Applications of Aquatic Chemistry. Wiley, New York). Anaerobic ammonium oxidation (Mulder A., van de Graaf, A. A., Robertson, L: A. and Kuenen, J. G. (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol. 16, 177-184). although possible, was not considered. In fact, C/N ratio of the reactive organic matter has only mild repercussions on the results; i.e. in the same range as the analytical errors for alkalinity and total carbonates. The objective was simply to roughly confront characteristics of outflowing waters and the calculation. Respective roles of aerobes and denitrifiers, for instance, are not certain. Several periods during low water or floods were selected with various ranges for calcium dissolution or nitrate and oxygen concentrations. The result is that in most cases simulation and data are in reasonable accordance (Fig. 5). Amounts of organic matter in River Loire are generally sufficient to sustain the process (Table 3. Particulate organic matter is probably the most reactive. The balance of oxidation of organic matter indicates that about 65 mu g C-org/l.h are oxidized during the transport without much variation with the river regime or organic discharge. It is concluded that limestone dissolution is directly dependent on organic matter oxidation, but variation occurs (7-29 mg CuCO3/l) with the level of bases that can be neutralized in the River Loire water. (C) 1998 Elsevier Science Ltd. All rights reserved

Contribution to knowledge of gypsum karstology, PhD thesis, 1998, Calaforra Chordi, J. M.

The objective of this study was not to establish a definitive judgement regarding a topic for which very little previous information was available, but rather to open new routes for research into karst by means of a particularized analysis of some of the factors involved in the speleogenesis of gypsiferous materials. The main obstacle to the attainment of this goal has been the scientific community's lack of interest in karst in gypsum, particularly in our country, until the nineteen eighties. To overcome this neglect it was decided, in my opinion quite correctly, to extend the bounds of the study as far as possible, so that the information obtained from the contrast found between the most important worldwide zones of karst in gypsum could be applied to the gypsiferous karst in our country, and in particular, to the most significant, the karst in gypsum of Sorbas.
This is the justification for the numerous references in the text to the gypsiferous karst and cavities in gypsum that are most relevant in Spain (Sorbas, Gobantes, Vallada, Archidona, Estremera, Baena, the Ebro Basin, Estella, Beuda, Borreda, etc.) and also to the best-known gypsiferous karsts worldwide (Podolia, Secchia, Venna del Gesso Romagnolo, Sicily and New Mexico). By means of these comparisons, the initial lack of information has been overcome.
The study is based on three central tenets, which are interrelated and make up the first three chapters of this report. The first consideration was to attempt to characterize the particular typology of gypsiferous karst from the geological (both stratigraphic and structural) point of view. This chapter also provides an introduction to each of the gypsiferous karsts examined. The second chapter is dedicated to the geomorphology of gypsiferous karst, under both superficial and subterranean aspects. It is important to note that the study of a gypsiferous karst from the speleological point of view is something that may seem somewhat unusual; however, this is one of the points of principle of this paper, the attempt to recover the true meaning of a word that has historically been unfairly condemned by a large part of the Spanish scientific community. Thirdly, a detailed study has been made of the hydrochemistry of the most important gypsiferous karsts in our region, together with the presentation of a specific analytical methodology for the treatment of the hydrochemical data applicable to the gypsiferous karst.
Geological characterization of gypsum karst
In the characterization of karst in gypsum, the intention was to cover virtually all the possibilities from the stratigraphic and structural standpoints. Thus, there is a description of widely varying gypsiferous karsts, made up of Triassic to Miocene materials, some with a complex tectonic configuration and others hardly affected by folding. The gypsiferous karsts described, and their most significant geological characteristics, are as follows:
Karst in gypsum at Sorbas (Almeria): composed of Miocene gypsiferous levels with the essential characteristic of very continuous marly interstrata between the layers of gypsum, which decisively affect the speleogenesis of the area. The gypsum layers have an average thickness of about 10 m and, together with the fracturing in the zone, determine the development of the gypsiferous cavities. These are mainly selenitic gypsum - occasionally with a crystal size of over 2 m - and their texture also has a geomorphologic and hydrogeologic influence. This area is little affected by folding and so the tectonic influence of speleogenesis is reduced to the configuration of the fracturing.
The Triassic of Antequera (Malaga): this is, fundamentally, the gypsiferous outcrop at Gobantes-Meliones, originating in the Triassic and located within the well-known "Trias" of Antequera. It is made up of very chaotic gypsiferous materials containing a large quantity of heterometric blocks of varied composition; the formation may be defined as a Miocene olitostromic gypsiferous breccia that is affected by important diapiric phenomena. The presence of hypersoluble salts at depth is significant in the modification of the hydrochemical characteristics of the water and in the speleogenetic development of the karst.
The Triassic of Vallada (Valencia): Triassic materials outcrop in the Vallada area; these mainly correspond to the K5 and K4 formations of the Valencia Group, massive gypsum and gypsiferous clays. The influence of dolomitic intercalations in the sequence is crucial to the speleogenesis of the area and this, together with intense tectonic activity, has led to the development in this sector of the deepest gypsiferous cavity in the world: the "Tunel dels Sumidors". As in the above case, the presence of hypersoluble salts at depth and the varied lithology influence the variations in the hydrodynamics and hydrochemistry of the gypsiferous aquifer.
Other Spanish gypsum karsts: this heading covers a group of gypsiferous areas and cavities of significant interest from the speleogenetic standpoint. They include the area of Estremera (Madrid), with Miocene gypsiferous clays and massive gypsum arranged along a large horizontal layer; this has produced the development of the only gypsiferous cavity in Spain with maze configuration, the Pedro Fernandez cave. The study of this cave has important hydrogeological implications with respect to speleogenesis in gypsum in phreatic conditions. The Baena (Cordoba) sector, in terms of its lithology, is comparable to the "Trias de Antequera". Here, the cavities developed in gypsiferous conglomerates, following structural discontinuities have enabled contact between carbonate and gypsiferous levels, and so we may speak of a mixed karstification: a karst in calcareous rocks and gypsum. The karst of Archidona (Malaga) is similar to that of the Gobantes-Meliones group and is significant because of the geomorphologic evolution of the karst, which is related to the diapiric ascent of the area and the formation of karstic ravines. The karst in the Miocene and Oligocene gypsum of the Ebro Basin (Zaragoza), has been taken as a characteristic example of a gypsiferous karst developed under an alluvial cover, with the corresponding geomorphological implications in the evolution of the surface landforms. In the gypsiferous area of Borreda (Barcelona), the presence of anhydritic levels in the sequence might have influenced the speleogenesis of its cavities. The cavity of La Mosquera, in Beuda (Girona), developed in massive Paleogene gypsum. This is the only Spanish example of a phreatic gypsiferous cavity developed in saccaroid gypsum, which is related to the particular subterranean morphology discovered. Finally, this group includes other Spanish gypsiferous outcrops visited during the preparation of this report, the references to which may be found in the relevant chapters.
Karst in gypsum in Europe and America: In order to complete the study of karst in gypsum, and with the idea of using all the available data on the karstology of gypsiferous materials for comparative studies of data for our country, a complementary activity was to define the most significant geological characteristics of the most important gypsiferous karsts in the world. An outstanding example is the gypsiferous karst at Podolia (Ukraine), developed in microcrystalline Miocene gypsum which has undergone block tectonics related to the collapse of the Precarpatic foredeep. This gypsum provides interesting data on speleogenesis in gypsiferous materials, as its evolution is related to the confining of the only gypsiferous stratum (of 10 to 20 m depth) producing interconnected labyrinthine galleries of over 100 km in length. Another well-known karst in gypsum is the one located at "Venna del Gesso Romagnolo" (Italy), in the Bologna region, with a lithology that is very similar to that which developed at Sorbas, but with the difference that it underwent more intense tectonics with folding and fracturing of the Tertiary sediments of the Po basin. In the same Italian province, in "L'alta Val di Sec-chia", there are outcrops of karstified Triassic materials which correspond to the formation of Burano, composed of gypsum and anhydrite with hypersoluble salts at depth and very notable diapiric phenomena. The study of this area has been used for a comparative analysis - geomorphology and hydrogeochemistry - with the Spanish gypsiferous karsts developed in Triassic levels. The third Italian gypsiferous karst to be considered is the one developed in Sicily, which has extensive Messinian outcrops of microcrystalline and selenitic gypsum as well as a great variety of lithologic types within the gypsiferous sequence, which we term the "gessoso solfifera" sequence. This gypsiferous karst is especially interesting from the geomorphologic standpoint due to the great quantity and variety of present superficial karstic forms. This has also served as a guide for the study of Spanish gypsiferous karsts. Finally, considering the relation between climatology and the development of karstic forms, we have also studied the karst in gypsum in New Mexico, where there is an extensive outcrop of Permian gypsum, both micro and macrocrystalline, situated on a large platform almost unaffected by deformation, and where the conditions of aridity are very similar to those found in the gypsiferous karst of Sorbas.
Geomorphological characterization of gypsum karst
From the geomorphological standpoint, the intention is to give an overview of the great variety of karstic forms developed in gypsum, traditionally considered less important than those developed in carbonate areas. This report shows this is not the case.
The theory of Convergence of Forms has been shown to be an efficient tool for the study of the morphology of karst in gypsum. Here, its principles have been used to provide genetic explanations for various gypsiferous forms derived from carbonate studies, and for the reverse case. In fact, studying a karst in gypsum is like having available a geomorphological laboratory where not only are the processes faster but they are also applicable to the karstology of carbonate rocks.
A large number of minor karstic forms (Karren) have been identified. The most important factors conditioning their formation are the texture of the rock, climatology and the presence of overlying deposits. The first, particularly, is largely responsible for determining the abundance of certain forms with respect to others. Thus, Rillenkarren, Trittkarren and small "kamenitzas" are more frequently found in microcrystalline and sandstone gypsum (for example, karst in gypsum in Sicily (Italy) and Va-llada (Valencia, Spain). Others seem to be more exclusive to selenitic gypsum, such as exfoliation microkarren, or are closely related to the climatology of the area (Spitzkarren develops from the alteration of gypsum in semiarid conditions). Others are related either to the presence of developed soil cover (Rundkarren, using Convergence of Forms), or to their specific situation (candelas and Wallkarren around dolines and sinkholes) or to the microtexture of the gypsum and the orientation of the 010 and 111 crystalline planes and twinning planes for the development of nanokarren.
The tumuli are the most peculiar forms of the Sorbas karst in gypsum, though they have also been identified in other gypsiferous karsts (Bolonia, New Mexico, Vallada, etc.). These are subcircular domes of the most superficial layer of the gypsum. Their formation has been related to processes of precipitation-solution and of capillary movement through the gypsiferous matrix. Their extensive development is largely determined by the climatology of the area and by the structural organization. It is therefore clear that the best examples are found in the karst of Sorbas due to the abrupt changes in temperature and humidity that occur in a semiarid climate, and because of the horizontality of the gypsiferous sequence.
Karst in gypsum and its larger exokarstic forms, apart from being climatically determined, also depend on the structural state and lithological determinants of the area. Thus, it is possible to differentiate between gypsiferous karsts where the lithology, together with erosive breakup, is more important (Sorbas and New Mexico) and others where confining hydraulic conditions persist (Estremera and Podolia). In other cases, tectonics has played a significant modelling role, and there is a clear possibility of an inversion of the relief (Bolonia or Sicily) or of the effect of diapiric processes (Secchia, Vallada, Antequera). The typological diversity of the dolines is obviously also related to these premisses. Another example is the relation existing between carbonate precipitation and gypsum solution, as evidenced in contrasting examples (Bolonia versus Sorbas).
Subterranean karstic forms have been examined from a double perspective: the morphology of the passages and the mineralization within the cavities. With respect to the former, a noteworthy example is the interstratification karst of Sorbas, where subterranean channels have developed during two well-differentiated phases, the phreatic and the vadose. The first was responsible for the formation of the small proto-galleries, currently relicts that are observable as false dome channels in the bottom of the gypsiferous strata. The second, with an erosive character, enabled the breakup of the marly interstrata and the formation of the large galleries found today. Other aspects considered include the speleogenetic influence of the presence of calcareous intercalations in the gypsiferous sequence (Vallada karst), gypsiferous agglomerates (Baena karst), anhydrite (Rotgers karst), suffusion processes (Sorbas karst) and the importance of condensation.
Spelothemes in gypsiferous cavities have been approached with special concern for gypsiferous speleothemes, in particular those which, due to their genetic peculiarity or to the lack of previous knowledge about them, are most significant. Among these are gypsum balls, with phenomena of solution, detritic filling, capillarity and evaporation; gypsum hole stalagmites, where the precipitation-solution of the gypsum controlling the formation of the central orifice is related to the previous deposit of carbonate speleothemes; gypsum trays that mark the levels of maximum evaporation; gypsum dust, determined by abrupt changes in temperature and humidity in areas near the exterior of gypsiferous cavities. All of these are characteristic of, and practically exclusive to, gypsiferous karsts in semiarid ztenes such as Sorbas and New Mexico.
Karst in gypsum has been morphologically classified with reference to the previously-mentioned criteria: the presence and typology of epigean karstic forms, both macro and microform; the typology of hypogean karstic forms (passages) and the type of speleothemes within the cavities (gypsiferous or carbonate). All these variables are clearly influenced by climatology, and so a study of the geomorphology of gypsiferous karst is seen to be an efficient tool for the analysis of the paleoclimatology of an area.
Hydrogeochemical characterization of gypsum karst
The hydrogeochemical characterization of karst in gypsum was approached in two stages. The first one was intended to establish themodels to be applied to the hydrochemistry approach, while the second provided various examples of hydrochemical studies carried out in gypsiferous karsts.
The theoretical framework which has been shown to be most accurate with respect to the formulation of chemical equilibria in water related to gypsiferous karst is the Virial Theory and the Pitzer equations.
For this study, we used a simplification of these equations as far as the second virial coefficient by means of a simple, polynomial variation to obtain the equilibrium state of the water with respect to the gypsum, for an ionic strength value greater than 0.1 m and temperatures of between 0.5 and 40 "C. This was the case of the gypsiferous karsts found to be related to hypersaline water at depth (Vallada, Gobantes-Meliones, Poiano). In the remaining situations, where the ionic strength was below 0.1 m, only the theory of ionic matching was used.
The hydrochemical study of the gypsiferous karst of Gobantes-Meliones (Malaga) led to the hypothesis of the possible influence of hypersaline water on karstification in gypsum. Using theoretical examples of the mixing of water derived both from hypersaline water and from water related only to the gypsiferous karst, it was shown that above a percentage content of 0.1:0.9 of saline and sulphated water, the mixture is subsaturated with respect to gypsum and other minerals. On reaching percentages greater than 0.5:0.5, values of oversaturation are again found. This could mean that the contact between sulphated and hypersaline water is a karstification zone in gypsum at depth.
In the gypsiferous karst at Salinas-Fuente Camacho (Granada), a study has been made of the hydrochemical influence of dolomitic levels in the sequence by means of the analysis of the hydrochemical routes between hydraulically-connected points. The generic case of mass transfer in this gypsiferous aquifer implies a precipitation of calcite which is in-congruent with dolomitic solution, proving that the process of dedolomitization in gypsiferous aquifers with an abundance of dolomitic rocks can be an effective process. In situations of high salinity, with contributions of hypersaline water, the process may be inverted, such as occurs in coastal carbonate aquifers influenced by the fresh-saltwater interface.
The gypsiferous aquifer of Sorbas-Tabernas (Almeria) provides the best case of karstification in gypsum in Spain; the hydrochemical study carried out has been used as an example of karstification in gypsum completely uninfluenced by sodium-chloride facies. It is shown, from the hydrochemical similarities between the different sectors, that the uniformity of the flow from the system main spring (Los Molinos) responds to the delayed hydraulic input through the overlying post-evaporitic materials and to the pelitic intercalations of the gypsiferous sequence. The aquifer is partially semiconfined, a situation which is comparable to the onset of the karstification stage, while the area of the Sorbas karst, strictly speaking, bears no hydriaulic relation to the rest of the system, behaving like a free aquifer intrinsically related to the epikarstic zone. This fact is demonstrated by the hydrochemical differences between the main spring and those related to gypsiferous cavities.
Apart from the general study of the Sorbas-Tabemas aquifer, a study was also made of the hydrochemical-time variations within cavities, and in particular within the Cueva del Agua, where it is possible to observe particular processes affecting karstification in gypsum, such as the precipitation of carbonates on the floor of the cavity which produce, in that area, a greater solution of gypsum (the phenomenon of hyperkarstification). Furthermore, the temporal evolution of the chemistry of the cavity, along 800 m of subterranean flow through its interior, shows the existence of inertial sectors where the variations were less abrupt. Only in the case of particular sectors, related to sporadic hydriaulic contributions or to the proximity to points of access., was a notable seasonal influence detected.
A similar hydrochemical study was carried out in the karst of Vallada (Valencia), along the cavity of the Tunel dels Sumidors. The chemistry here was compared with that of the springs of Brolladors (whose water rapidly infiltrates into the cavity) and Saraella (a saline resurgence of the whole system). Unexpected increases in the ionic content of certain salts (sulphates and chlorides) were detected during periods of increased flow; these were interpreted as the effect of the recharging of the Saraella spring arising from the immediate contribution of rapidly circulating sulfated water coming from the cavity and the subsequent mobilization of interstitial water with an ionic content higher than the characteristic level of the spring.
We present as a hypothesis the idea that, in addition to the hydrogeochemical processes described that can affect the evolution of a gypsiferous karst, the processes of sulphate reduction also influence karstification in gypsum, at least during the earliest stages. Some examples such as the presence of gypsum with abundant organic matter reprecipitated into phreatic channels (Sorbas) or veins of sulphur related to gypsiferous karsts (Podolia, Sicily) lend support to this idea.
Studies of the solution-erosion of gypsum have been performed by physical methods (tablets and M.E.M.) showing that the solution-erosion of gypsum within cavities is minimal (0.03 mm/ year) compared to that existing in the exterior (0.3 mm/year). The speleogenetic effect of condensation within the cavities has also been shown, with solution-erosion rates of 0.005 mm/year to be like the equivalent surface lowering. These data correspond to the karst in gypsum at Sorbas, where, additionally, a study about the time variation of the solution-erosion was carried out. It was found that the process is not continuous but clearly sporadic. During periods of torrential rain, the solution-erosion ranges from a weight loss of 400 mg/cm2/year on the surface of the karst to 75 mg/cm2/year inside the caves, while during the rest of the year the weight loss was barely 1 mg/cm2/year. The physical methods were compared with the results obtained from chemical methods, and it was found that, in general, higher values were obtained with the former (10-20% higher when weighted for the rainfall during the measuring periods). Thus it is reasonable to consider that the erosive process is more marked than was at first assumed.
In total, three cavity tracing experiments were carried out, all with fluoresceine, two of them in Cueva del Agua in Sorbas (during periods of high and low water levels) and the other in Tunel dels Sumidors in Vallada. At the first site, the comparison of the two tracing tests reveals a differential hydrodynamic behaviour of the cavity for the two contrasting situations; periods of high water input and periods of low rainfall. This behaviour is characteristic of well developed karstic aquifers, where the hydrodynamic effect of the circulation of water through small channels or, in this case, through the gypsiferous matrix and interbedded marly layers, seems to be more important under conditions of low hydraulic input than when rainfall is abundant. The two situations tested seem to confirm that the Cueva del Agua system, an epikarstic aquifer, which is representative of karstification in gypsum, has scarce retentive power and so large volumes of precipitation are totally discharged via the spring within a few days. However, the explanation of the small but continuous flow from the base of the cavity requires the inclusion of other factors in the interpretation. In this case, the flow seems to be fairly independent of rainfall and attributable to other processes, in addition to the previously described ones, such as the retentive power of the gypsiferous matrix and the marly interstrata. These might include the high degree of condensation measured over long periods, both on the surface of the karst in gypsum and within the cavities. In the case of the Tunel dels Sumidors, a highly irregular response was found, despite the fact that the coefficient of dispersivity was found to be 0.4. This value is similar to that obtained for the karst in gypsum at Sorbas in response to low water conditions, and so, here too, one might assume the influence of greater than expected flow-retaining processes, between the entry and exit points. Doubtless the karstic system of the Tunel dels Sumidors is more complex than was initially expected and in fact, the irregularity reflected by the fluoresceine concentration curve over time implies the existence of other factors to explain the diversity of the relative maxima obtained. Firstly, the presence of numerous Triassic clay intercalations might delay the flow, in addition to retaining a certain quantity of fluoresceine by ionic exchange. There is also a possibility that the flow is dispersed through a network of small conduits and pores, due to the permeability of the gypsiferous matrix. Finally, we cannot discount the possible existence of a deep-level input which, in this case, would be responsible for the variation in the flow and the chemical composition. This set of suppositions, as a whole, would explain the fact that the response of the spring to tracing is so irregular, even though we cannot achieve a definition of the qualitative influence of each one on the hydrodynamics of the system.
In order to verify some of the above hypotheses, particularly those referring to the process of condensation within cavities, an experiment was designed, consisting of a microtracing test at some points where condensation had been detected within the Cueva del Agua at Sorbas. The test produced a range of condensation flow speed values of 0.2 to 30 cm/hour and shows that, in those sections where the presence of condensation flow is visually apparent, there is a rapid dispersion of the colourant. However, it also shows that at points where there is no apparent condensation the process also occurs, but at a lower rate of efficiency. The importance of condensation within cavities has two aspects; firstly, speleogenetic, with the development of solution forms (cupolas) and deposit forms (capillarity boxwork); and secondly, hydrogeological, as this is the reason why certain processes (strong changes in temperature and humidity, multiple routes of airflow exchange with the exterior) may in themselves constitute a hydraulic contribution, of slight importance, but sufficient to explain a large part of the base flow (0.2 - 0.8 L/s) of a whole cavity system such as the Cueva del Agua in semiarid conditions.
With the intention of completing the analyses carried out in various karsts in gypsum, instruments were installed in the Cueva del Agua at Sorbas to measure, by continuous registration, some important physico-chemical parameters that might provide additional data on the hydro-geologic behaviour of this gypsiferous karst, especially at the level of the epikarstic zone. The parameters of temperature and water conductivity were considered most important, due to their singular behaviour patterns. During the experiment there were two periods of rainfall that modified the chemistry of the cavity, one of 30 mm in two days and another of 200 mm (almost the annual total) in four days. In the second case, which was much more extreme, a very significant increase in water temperature (up to 7 °C during the initial period of high water flow) was detected, while conductivity fell. But suddenly, when the minimum conductivity was reached, the temperature dropped sharply by 6-7 °C to return to the base temperature of the cavity. Subsequently, the temperature again stabilized at about 7 °C above the data recorded during the dry period. This behaviour pattern was not detected when the rainfall was slight. The explanation for this dual behaviour observed is fundamentally based on the quantity of rainfall and on the differences between the exterior air temperature, the temperature of interstitial water and the temperature recorded in the spring during high water flow. When water temperature in the cavity during high water flow is higher than the base temperature recorded in the period immediately before, it means that the interstitial water does not mobilize. However, when at any time the two temperatures coincide, one might suppose that there might have existed a process of mobilization of the water previously resident in the rock, by a piston effect, but in the unsaturated zone. On the other hand, the temporal variations of these parameters during the months following periods of high rainfall have enabled us to detect the existence of distinct periods during the return to normal cavity conditions. By carefully examining the decrease curve of water temperature inside the cavity while conductivity regained its maximum stable value, two periods may be differentiated. The first may be termed the "inertial influence period", when the rainfall occurring removes all signs of natural variation in the cavity. Thus, the daily external influences are not clearly detectable and the curve is downward-sloping and asymptotic with no significant oscillations. In the second period, which ends with the total stabilization of the parameter at the level of the initial conditions, the asymptotic descent is seen to be affected by daily temperature variations. This is termed the "inertial recovery period", during which external variations start to have an effect on the interior of the cavity such that there is a progressive increase in the amplitude of the daily variation in water temperature, air temperature and relative humidity. This behaviour pattern of variation of these parameters during periods of high rainfall, might be extended to all karstic systems, varying only in magnitude and temporal extent.


Environmental vulnerability and agriculture in the karstic domain: landscape indicators and cases in the Atlas Highlands, Morocco, 1999, Akdim Brahim, Amyay Mohammed
After the brief presentation of the major karstic areas in Morocco, the article focused essentially on the Atlas mountains to investigate the impact of the agriculture on the natural systems equilibrium. Socio-economic changes (demographic pressure, escalation of the landscape use, utilisation of new techniques in water harvesting, etc...) have sometimes fathered mechanisms of degradation. Many indicators seem to reflect these mechanisms. The pedologic indicators, soil erosion, the hydrologic and geomorphic indicators, are apprehended to demonstrate existent correlation between different variables and the often negative impacts of land over-use in the karstic domain of the Middle Atlas.

Speleogenesis: Evolution of Karst Aquifers., 2000,
The aim of this book is to present advances made in recent decades in our understanding of the formation of dissolutional caves, and to illustrate the role of cave genetic ( speleogenetic ) processes in the development of karst aquifers. From the perspective of hydrogeology, karst ground water flow is a distinct kind of fluid circulation system, one that is capable of self-organization and self-development due to its capacity to dissolve significant amounts of the host rock and transport them out of the system. Fluid circulation in soluble rocks becomes more efficiently organized by creating, enlarging and modifying patterns of cave conduits, the process of speleogenesis. We can assert that karst ground water flow is a function of speleogenesis and vice versa . The advances in cave science are poorly appreciated in what may be termed ?mainstream hydrogeology?, which retains a child-like faith in flow models developed in the sand box. Many karst students also will not be aware of all emerging concepts of cave origin because discussions of them are scattered through journals and books in different disciplines and languages, including publications with small circulation. An understanding of principles of speleogenesis and its most important controls is indispensable for proper comprehension of the evolution of the karst system in general and of karst aquifers in particular. We hope this book will be useful for both karst and cave scientists, and for general hydrogeologists dealing with karst terranes. This book is a pioneer attempt by an international group of cave scientists to summarize modern knowledge about cave origin in various settings, and to examine the variety of approaches that have been adopted. Selected contributions from 44 authors in 15 nations are combined in an integrated volume, prepared between 1994 and 1998 as an initiative of the Commission of Karst Hydrogeology and Speleogenesis, International Speleological Union. Despite a desire to produce an integrated book, rather than a mere collection of papers, the editors' policy has not been directed toward unifying all views. Along with some well-established theories and approaches, the book contains new concepts and ideas emerging in recent years. We hope that this approach will stimulate further development and exchange of ideas in cave studies and karst hydrogeology. Following this Introduction, (Part 1), the book is organized in seven different parts, each with sub-chapters. Part 2 gives a history of speleogenetic studies, tracing the development of the most important ideas from previous centuries (Shaw, Chapter 2.1) through the early modern period in the first half of this century (Lowe, Chapter 2.2) to the threshold of modern times (W.White, Chapter 2.3). The present state of the art is best illustrated by the entire content of this book. Part 3 overviews the principal geologic and hydrogeologic variables that either control or significantly influence the differing styles of cave development that are found. In Chapter 3.1 Klimchouk and Ford introduce an evolutionary approach to the typology of karst settings, which is a taken as a base line for the book. Extrinsic factors and intrinsic mechanisms of cave development change regularly and substantially during the general cycle of geological evolution of a soluble rock and , more specifically, within the hydrogeologic cycle. The evolutionary typology of karst presented in this chapter considers the entire life cycle of a soluble formation, from deposition (syngenetic karst) through deep burial, to exposure and denudation. It helps to differentiate between karst types which may concurrently represent different stages of karst development, and is also a means of adequately classifying speleogenetic settings. The different types of karst are marked by characteristic associations of the structural prerequisites for groundwater flow and speleogenesis, flow regime, recharge mode and recharge/discharge configurations, groundwater chemistry and degree of inheritance from earlier conditions. Consequently, these associations make a convenient basis to view both the factors that control cave genesis and the particular types of caves. Lithological and structural controls of speleogenesis are reviewed in general terms in Chapters 3.2 (Klimchouk and Ford). Lowe in Chapter 3.3 discusses the role of stratigraphic elements and the speleo-inception concept. Palmer in Chapter 3.4 overviews the hydrogeologic controls of cave patterns and demonstrates that hydrogeologic factors, the recharge mode and type of flow in particular, impose the most powerful controls on the formation of the gross geometry of cave systems. Hence, analysis of cave patterns is especially useful in the reconstruction of environments from paleokarst and in the prediction and interpretation of groundwater flow patterns and contaminant migration. Any opportunity to relate cave patterns to the nature of their host aquifers will assist in these applied studies as well. Osborne (Chapter 3.7) examines the significance of paleokarst in speleogenesis. More specific issues are treated by Klimchouk (The nature of epikarst and its role in vadose speleogenesis, Chapter 3.5) and by V.Dublyansky and Y.Dublyansky (The role of condensation processes, Chapter 3.6). Part 4 outlines the fundamental physics and chemistry of the speleogenetic processes (Chapter 4.1) and presents a variety of different approaches to modeling cave conduit development (Chapter 4.2). In Chapter 4.1, the chemical reactions during the dissolution of the common soluble minerals, calcite, gypsum, salt and quartz, are discussed with the basic physical and chemical mechanisms that determine their dissolution rates. As limestone is the most common karst rock and its dissolution is the most complex in many respects, it receives the greatest attention. Dreybrodt (Section 4.1.1) and Dreybrodt and Eisenlohr (Section 4.1.2) provide advanced discussion and report the most recent experimental data, which are used to obtain realistic dissolution rates for a variety of hydrogeologic conditions and as input for modeling the evolution of conduits. Although direct comparisons between theoretical or analytical dissolution rates and those derived from field measurements is difficult, a very useful comparison is provided by W.White (Section 4.1.3). The bulk removal of carbonate rock from karst drainage basins can be evaluated either by direct measurement of rock surface retreat or by mass balance within known drainage basins. All of these approaches make sense and give roughly accurate results that are consistent with theoretical expectations. It is well recognized today that the earliest, incipient, phases of speleogenesis are crucial in building up the pattern of conduits that evolve into explorable cave systems. It is difficult to establish the major controls on these initial stages by purely analytical or intuitive methods, so that modeling becomes particularly important. Various approaches are presented in Chapter 4.2. Ford, Ewers and Lauritzen present the results of systematic study of the propagation of conduits between input and output points in an anisotropic fissure, using a variety of hardware and software models, in series representing the "single input", "multiple inputs in one rank", and "multiple inputs in multiple ranks" cases (Section 4.2.1). The results indicate important details of the competitive development of proto-conduits and help to explain branching cave patterns. In the competition between inputs, some principal tubes in near ranks first link ("breakthrough") to an output boundary. This re-orients the flowfields of failed nearby competitors, which then extend to join the principal via their closest secondaries. The process extends outwards and to the rear, linking up all inputs in a "cascading system". The exploding growth of computer capability during the last two decades has greatly enhanced possibilities for digital modeling of early conduit development. Investigating the growth of a single conduit is a logical first step in understanding the evolution of caves, realized here by Dreybrodt and Gabrov?ek in the form of a simple mathematical model (Section 4.2.2) and by Palmer by numerical finite-difference modeling (Section 4.2.3). The models show that positive feedback loops operate; widening a fracture causes increasing flow through it, therefore dissolution rates increase along it and so on, until finally a dramatic increase of flow rates permits a dramatic enhancement of the widening. This breakthrough event terminates the initial stage of conduit evolution. From then on the water is able to pass through the entire conduit while maintaining sufficient undersaturation to preserve low-order kinetics, so the growth rate is very rapid, at least from a geological standpoint -- usually about 0.001-0.1 cm/yr. The initiation ("breakthrough") time depends critically on the length and the initial width of the fracture and, for the majority of realistic cases, it covers a time range from a few thousand years to ten million years in limestones. The modeling results give a clear explanation of the operation of selectivity in cave genesis. In a typical unconfined karst aquifer there is a great range of enlargement rates along the competing flow routes, and only a few conduits will grow to enterable size. The modeling also provides one starting point (others are discussed in Chapter 5.2) to explain uniform maze patterns, which will be favored by enlargement of all openings at comparable rates where the discharge/length ratio is great enough. Single-conduit modeling has the virtue of revealing how the cave-forming variables relate to each other in the simplest possible way. Although it is more difficult to extend this approach to two dimensions, many have done so (e.g. Groves & Howard, 1994; Howard & Groves, 1995; in this volume ? Ford, Ewers and Lauritzen, Section 4.2.1; Dreybrodt and Siemers, Section 4.2.4, and Sauter and Liedl, Section 4.2.5). The modeling performed by Dreybrodt and Siemers shows that the main principles of breakthrough derived from one-dimensional models remain valid. The evolution of karst aquifers has been modeled for a variety of different geological settings, including also variation in lithology with respect to the dissolution kinetics. Sauter and Liedl simulate the development of conduits at a catchment scale for fissured carbonate rocks with rather large initial openings (about 1 mm). The approach is based upon hydraulic coupling of a pipe network to matrix continuum in order to represent the well-known duality of karst aquifer flow systems. It is also shown how understanding of the genesis of karst aquifers and modeling of their development can assist in characterization of the conduit system, which dominates flow and transport in karst aquifers. An important point that has emerged from cave studies of the last three decades is that no single speleogenetic model applies to all geologic and hydrologic settings. Given that settings may also change systematically during the evolutionary geological cycles outlined above (Chapter 3.1), an evolutionary approach is called for. This is attempted in Part 5, which is organized to give extended accounts of speleogenesis in the three most important settings that we recognize: coastal and oceanic (Chapter 5.1), deep-seated and confined (Chapter 5.2) and unconfined (Chapter 5.3). Each Chapter begins with a review of modern ideas on cave development in the setting, followed by representative case studies. The latter include new accounts of some "classic" caves as well as descriptions of other, little-known cave systems and areas. Readers may determine for themselves how well the real field examples fit the general models presented in the introductory sections. Mylroie and Carew in Chapter 5.1 summarize specific features of cave and karst development in young rocks in coastal and island settings that result from the chemical interactions between fresh and salt waters, and the effects of fluctuating sea level during the Quaternary. The case studies include a review of syngenetic karst in coastal dune limestones, Australia (S.White, 5.1.1) and an example of speleogenesis on tectonically active carbonate islands (Gunn and Lowe, 5.1.2). Klimchouk in Chapter 5.2 reviews conditions and mechanisms of speleogenesis in deep-seated and confined settings, one of the most controversial but exciting topics in modern cave research. Conventional karst/speleogenetic theories are concerned chiefly with shallow, unconfined geologic settings, supposing that the karstification found there is intimately related to surface conditions of input and output, with the dissolution being driven by downward meteoric water recharge. The possibility of hypogenic karstification in deeper environments has been neglected for a long time, and the quite numerous instances of karst features found at significant depths have usually been interpreted as buried paleokarst. However, the last decade has seen a growing recognition of the variety and importance of hypogene dissolution processes and of speleogenesis under confined settings which often precedes unconfined development (Hill, 1987, 1995; Klimchouk, 1994, 1996, 1997; Lowe, 1992; Lowe & Gunn, 1995; Mazzullo & Harris, 1991, 1992; Palmer, 1991, 1995; Smart & Whitaker, 1991; Worthington, 1991, 1994; Worthington & Ford, 1995). Confined (artesian) settings were commonly ignored as sites for cave origin because the classic concept of artesian flow implies long lateral travel distances for groundwater within a soluble unit, resulting in a low capacity to generate caves in the confined area. However, the recognition of non-classical features in artesian flow, namely the occurrence of cross-formation hydraulic communication within artesian basins, the concepts of transverse speleogenesis and of the inversion of hydrogeologic function of beds in a sequence, allows for a revision of the theory of artesian speleogenesis and of views on the origin of many caves. It is proposed that artesian speleogenesis is immensely important to speleo-inception and also accounts for the development of some of the largest known caves in the world. Typical conditions of recharge, the flow pattern through the soluble rocks, and groundwater aggressiveness favor uniform, rather than competing, development of conduits, resulting in maze caves where the structural prerequisites exist. Cross-formational flow favors a variety of dissolution mechanisms that commonly involve mixing. Hydrogeochemical mechanisms of speleogenesis are particularly diverse and potent where carbonate and sulfate beds alternate and within or adjacent to hydrocarbon-bearing sedimentary basins. Hypogene speleogenesis occurs in rocks of varied lithology and can involve a variety of dissolution mechanisms that operate under different physical constraints but create similar cave features. Case studies include the great gypsum mazes of the Western Ukraine (Klimchouk, Section 5.2.1), great maze caves in limestones in Black Hills, South Dakota (Palmer, Section 5.2.2) and Siberia (Filippov, Section 5.2.3), karstification in the Redwall aquifer, Arizona (Huntoon, Section 5.2.4), hydrothermal caves in Hungary (Y.Dublyansky, Section 5.2.6), and sulfuric acid speleogenesis (Lowe, Bottrell and Gunn, Section 5.2.7, and Hill, Section 5.2.8). Y.Dublyansky summarizes the peculiar features of hydrothermal speleogenesis (Section 5.2.5), and V.Dublyansky describes an outstanding example of a hydrothermal cavity, in fact the largest ever recorded by volume, in the Rhodope Mountains (Section 5.2.9). Recognition of the scale and importance of deep-seated speleogenesis and of the hydraulic continuity and cross-formational communications between aquifers in artesian basins is indispensable for the correct interpretation of evolution of karst aquifers, speleogenetic processes and associated phenomena, regional karst water-resource evaluations, and the genesis of certain karst-related mineral deposits. These and other theoretical and practical implications still have to be developed and evaluated, which offers a wide field for further research efforts. Ford in Chapter 5.3 reviews theory of speleogenesis that occurs where normal meteoric waters sink underground through the epikarst or dolines and stream sinks, etc. and circulate in the limestone or other soluble rocks without any major artesian confinement. These are termed common caves (Ford & Williams, 1989) because they probably account for 90% or more of the explored and mapped dissolutional caves that are longer than a few hundred meters. This estimate reflects the bias in exploration; caves formed in unconfined settings and genetically related to surface recharge are the most readily accessible and hence form the bulk of documented caves. Common caves display chiefly the branchwork forms where the dissolutional conduits occupy only a tiny proportion of the total length or area of penetrable fissures that is available to the groundwaters. The rules that govern the selection of the successful linkages that will be enlarged into the branchwork pattern are supported in the models presented in Chapter 4.2. In the long section caves may be divided into deep phreatic, multi-loop, mixed loop and water table, and ideal water table types, with drawdown vadose caves or invasion vadose caves above them. Many large systems display a mixture of the types. The concepts of plan pattern construction, phreatic, water table or vadose state, and multi-phase development of common caves are illustrated in the case studies that follow the introduction. They are organized broadly to begin with examples of comparatively simple deep phreatic and multi-loop systems (El Abra, Mexico, Ford, Section 5.3.1 and Castleguard Cave, Canada, Ford, Lauritzen and Worthington, Section 5.3.2), proceeding to large and complex multi-phase systems such as the North of Thun System, Switzerland (Jeannin, Bitterly and Hauselmann, Section 5.3.3) and Mammoth Cave, Kentucky (Palmer, Section 5.3.8), to representatives of mixed vadose and phreatic development in mountainous regions (the Alps, Audra, Section 5.3.4; the Pyrenees, Fernandez, Calaforra and Rossi, Section 5.3.5; Mexico, Hose, Section 5.3.6) and where there is strong lithologic or structural control (Folded Appalachians, W.White, Section 5.3.7; gypsum caves in the South of Spain, Calaforra and Pulido-Bosch, Section 5.3.10). Two special topics are considered by W.White in Section 5.3.9 (Speleogenesis of vertical shafts in the eastern US) and Palmer (Maze origin by diffuse recharge through overlying formation). The set concludes with two instances of nearly ideal water table cave development (in Belize and Hungary, Ford, Section 5.3.12), and a review of the latest models of speleogenesis from the region where modern karst studies in the West began, the Classical Karst of Slovenia and Trieste (?u?ter?ic, Section 5.3.13). In Parts 2-5 attention is directed primarily on how the gross geometry of a cave system is established. Part 6 switches focus to the forms at meso- and micro- scales, which can be created during enlargement of the cave. Lauritzen and Lundberg in Chapter 6.1 summarize the great variety of erosional forms ( speleogenetic facies ) that can be created by a wide range of speleogenetic agents operating in the phreatic or vadose zones. Some forms of cave passages have been subject to intensive research and may be interpreted by means of simple physical and chemical principles, but many others are polygenetic and hence difficult to decipher with certainty. However, in addition to the analysis of cave patterns (see Chapter 3.4), each morphological element is a potential tool that can aid our inferences on the origin of caves and on major characteristics of respective past hydrogeological settings. In Chapter 6.2 E.White and W.White review breakdown morphology in caves, generalizing that the processes are most active during the enlargement and decay phases of cave development. Early in the process breakdown occurs when the flow regime shifts from pipe-full conditions to open channel conditions (i.e. when the roof first loses buoyant support) and later in the process breakdown becomes part of the overall degradation of the karst system. The chapter addresses the mechanism of breakdown formation, the geological triggers that initiate breakdown, and the role that breakdown plays in the development of caves. As the great majority of both theoretical considerations and case studies in this book deal with speleogenesis in carbonate rocks, it is useful to provide a special forum to examine dissolution cave genesis in other rocks. This is the goal of Part 7. Klimchouk (7.1) provides a review of speleogenesis in gypsum. This appears to be a useful playground for testing the validity and limitations of certain general speleogenetic concepts. Differences in solution kinetics between gypsum and calcite impose some limitations and peculiar features on the early evolution of conduits in gypsum. These peculiarities appear to be an extreme and more obvious illustration of some rules of speleogenetic development devised from conceptual and digital modeling of early conduit growth in limestones. For instance, it is shown (e.g. Palmer, 1984, 1991; Dreybrodt, 1996; see also Chapter 3.4 and Section 4.2.2) that initiation of early, narrow and long pathways does not seem feasible under linear dissolution rate laws (n=1) due to exponential decrease of the dissolution rates. Although the dissolution kinetics of gypsum are not well known close to equilibrium it is generally assumed that they are controlled entirely by diffusion and therefore linear. If dissolution of gypsum is solely diffusion-controlled, with no change in the kinetic order, conduit initiation could not occur in phreatic settings or by lateral flow through gypsum from distant recharge areas in artesian settings. Hence, the fact that maze caves are common in gypsum in artesian conditions (see Section 5.2.1) gives strong support to a general model of "transverse" artesian speleogenesis where gypsum beds are underlain by, or sandwiched between, insoluble or low-solubility aquifers (Chapter 5.2), and suggests that it may be applicable to cave development in carbonates. In unconfined settings, speleogenesis in gypsum occurs along fissures wide enough to support undersaturated flow throughout their length. Linear or crudely branching caves overwhelmingly predominate, which rapidly adjust to the contemporary geomorphic setting and to the maximum available recharge. Also, if considerable conduit porosity has been created in deep-seated settings, it provides ready paths for more intense groundwater circulation and further cave development when uplift brings the gypsum into the shallow subsurface. Speleogenesis in salt, reviewed in general and exemplified by the Monte Sedom case in Israel (Frumkin, Chapter 7.2), has been documented only in open, unconfined settings, where it provides a model for simple vadose cave development. Chapter 7.3 deals with speleogenesis in quartzites, illustrated by case studies from southeastern Minas Gerais, Brasil (Correa Neto, 7.3.1) and South Africa (Martini, 7.3.2). The process involves initial chemical weathering of the quartzite to create zones of friable rocks (sanding, or arenisation) which then are removed by piping, with further conduit enlargement due to mechanical erosion by flowing water. Part 8 combines the theoretical with some applied aspects of speleogenetic studies. Worthington, Ford and Beddows (8.1) show the important implications of what might be termed "speleogenetic wisdom" when studying ground water behaviour in karst. They examine some standard hydrogeological concepts in the light of knowledge of caves and their patterns, considering a range of case studies to identify the characteristic enhancement of porosity and permeability due to speleogenesis that occurs in carbonate rocks. The chapter focuses on unconfined carbonate aquifers as these are the most studied from the speleological perspective and most important for water supplies. Four aquifers, differing in rock type, recharge type (allogenic and autogenic), and age (Paleozoic, Mesozoic and Cenozoic), are described in detail to demonstrate the extent of dissolutional enhancement of porosity and permeability. It is shown that all four cases are similar in hydraulic function, despite the fact that some of them were previously characterized as different end members of a "karst ? non-karst" spectrum. Enhancement of porosity by dissolution is relatively minor: enhancement of permeability is considerable because dissolution has created dendritic networks of channels able to convey 94% or more of all flow in the aquifer, with fractures providing a small proportion and the matrix a negligible amount. These conclusions may be viewed as a warning to hydrogeologists working in carbonate terranes: probably the majority of unconfined aquifers function in a similar manner. Sampling is a major problem in their analysis because boreholes (the conventional exploration tool in hydrogeology) are unlikely to intersect the major channels that are conveying most of the flow and any contaminants in it. It is estimated, using examples of comprehensively mapped caves, that the probability of a borehole intersecting a conduit ranges from 1 in 50 to 1 in 1000 or more. Boreholes simply cannot be relied upon to detect the presence of caves or to ?characterise? the hydrologic functioning of cavernous aquifers. Wherever comprehensive evidence has been collected in unconfined carbonate aquifers (cave mapping plus boreholes plus lab analysis of core samples) it suggests that dissolution inexorably results in a similar structure, with channel networks providing most of the permeability of the aquifer, yet occupying a very minor fraction of its volume (Worthington, Ford and Beddows). Lowe (Chapter 8.2) focuses on developments in understanding the vital role played by karstic porosity, (broadly viewed as being the product of speleogenesis), in the migration of mineralizing fluids (or hydrocarbons) and in their deposition (or storage), and comments on the potential role of new speleogenetic concepts in developing greater understanding in the future. Although some early workers were clearly aware of actual evidence for some kind of relationship, and others noted its theoretical likelihood, it has been ignored by many until relatively recent times. This shortfall has gradually been redressed; new understanding of the extent and variety of karst processes is ensuring that new relationships are being recognized and new interpretations and models are being derived. The chapter does not pretend to give a comprehensive account of the topic but clearly demonstrates the wide applicability of speleogenetic knowledge to issues in economic geology. In Chapter 8.3 Aley provides an overview of the water and land-use problems that occur in areas with conduit aquifers. He stresses that sound land management must be premised on an understanding that karst is a three-dimensional landscape where the surface and subsurface are intimately and integrally connected. Failure to recognize that activity at the surface affects the subsurface, and the converse, has long been the root cause of many of the problems of water and land use in karst regions. Karst areas have unique natural resource problems, whose management can have major economic consequences. Although there is an extensive literature on the nature of particular problems, resource protection and hazard minimization strategies in karst, it rarely displays an advanced understanding of the processes of the conduit formation and their characteristics yet these will always be involved. This book does not pretend to be a definitive text on speleogenesis. However, it is hoped that readers will find it to be a valuable reference source, that it will stimulate new ideas and approaches to develop and resolve some of the remaining problems, and that it will promote an appreciation of the importance of speleogenetic studies in karst hydrogeology and applied environmental sciences. Acknowledgements: We sincerely thank all contributors for their willing cooperation in the long and difficult process of preparing this book, for their participation in developing its logic and methodology and their cheerful response to numerous requests. We thank all colleagues who discussed the work with us and encouraged it in many ways, even though not contributing to its content as authors. We are particularly grateful to Margaret Palmer for invaluable help in editing the English in many contributions, to Nataly Yablokova for her help in performing many technical tasks and to Elizabeth White who prepared comprehensive index. Our thanks are due to Dr. David Drew, Dr. Philip LaMoreaux, Dr. George Moore and Prof. Marian Pulina for reviewing the manuscript and producing constructive notes and comments on improvement of the final product. The organizational costs and correspondence related to the preparation of the book were partially sponsored by the National Speleological Society, the publisher. We thank David McClurg, the Chair of the NSS Special Publication Committee, for his extensive technical and organizational support in the preparation and publishing processes.

Forecasting of turbid floods in a coastal, chalk karstic drain using an artificial neural network, 2001, Beaudeau P, Leboulanger T, Lacroix M, Hanneton S, Wang Hq,
Water collected at the Yport (eastern Normandy, France) Drinking Water Supply well, situated on a karst cavity, is affected by surface runoff-related turbidity spikes that occur mainly in winter, In order to forecast turbidity, precipitation was measured at the center of the catchment basin over two years, while water level and turbidity were monitored at the web site. Application of the approach of Box and Jenkins (1976) leads to a linear model that can accurately predict major floods about eight hours in advance, providing an estimate of turbidity variation on the basis of precipitation and mater level variation over the previous 24 hours. However, this model is intrinsically unable to deal with (1) nonstationary changes in the time process caused by seasonal variations of in ground surface characteristics or tidal influence within the downstream past of the aquifer, and (2) nonlinear phenomena such as the threshold for the onset of runoff. This results in many false-positive signals of turbidity in summer. Here we present an alternative composite model combining a conceptual runoff submodel with a feedforward artificial neural network (ANN), This composite model allows us to deal with meaningful variables, the actioneffect of which on turbidity is complex, nonlinear, temporally variable and often poorly described. Predictions are markedly improved, i.e,, the variance of the target variable explained by 12-hour forward predictions increases from 28% to 74% and summer inaccuracies are considerably lowered. The ANN can adjust itself to new hydrological conditions, provided that on-line learning is maintained

Geostatistical and geochemical analysis of surface water leakage into groundwater on a regional scale: a case study in the Liulin karst system, northwestern China, 2001, Wang Y. , Ma T. , Luo Z. ,
The Liulin karst system is typical of hydrogeological systems in northern China, with a group of springs as the dominant way of regional groundwater discharge. Surface water leakage into groundwater has been observed in six sections of the rivers in the study area. To extract hydrogeological information from hydrochemical data, 29 water samples were collected from the system. On a trilinear diagram, most of the groundwater samples are clustered around the surface waters, indicating the effect of leakage on their chemistry. R-mode factor analysis was made on seven variables (Na, Ca, Mg, SO4, Cl, HCO3, and NO3) of the samples and three principal factors were obtained: the F-1 factor is composed of Ca, Mg and SO4, the F-2 of HCO3 and NO3, and the F-3 of Na and Cl. These factors are then used as regionalized variables in ordinary Kriging for unbiased estimates of the spatial variations of their scores. Considering regional hydrogeological conditions, the hydrogeological implications of the spatial distribution of the factor scores as related to the effects of the surface leakage are discussed. To evaluate the geochemical processes, the geochemical modeling code NETPATH was employed. The modeling results: show that mixing commonly occurs in the system and dolomite dissolution is more important than calcite dissolution. Dedolomitization (calcite precipitation and dolomite dissolution driven by anhydrite dissolution) is locally important, in the western flank of the system where the surface water leakage has the least effect.

Meaning and representation of boundaries in karst type maps, 2001, Angsü, Sser Stephan

The paper deals with boundaries in general and specifically with boundaries in large scale karst type maps. On the basis of a differentiation into dependent and independent variables a methodological attempt is presented, allowing to integrate information about the boundary type and the boundary accuracy. This additional information should help karst researchers answering genetic questions.


Recharge and aquifer response: Northern Guam Lens Aquifer, Guam, Mariana Islands, 2002, Jocson J. M. U. , Jenson J. W. , Contractor D. N. ,
The Northern Guam Lens Aquifer is an island karst aquifer in uplifted young, highly conductive limestone. Calculations of recharge based on differences between daily rainfall and daily pan evaporation suggest that the maximum annual mass of water delivered to the freshwater lens is about 67% of mean annual rainfall. Hydrographs of daily well-level responses plotted against daily rainfall indicate that the rate at which water is delivered to the lens is a function of rainfall intensity and the relative saturation of the vadose zone. Together, these variables determine the degree to which stormwater is shunted into fast flow through preferred pathways that bypass the bedrock matrix, rather than percolating slowly through the bedrock matrix. Data from the 40-year interval from 1956 to 1995 show that some 17% of rainfall on northern Guam arrives in small amounts (<0.6 cm/day). Most of this light rainfall is probably lost to evapotranspiration. At least another 20% of total rainfall on Guam arrives at very high intensities (>5.0 cm/day), which tend to promote fast flow at the expense of percolation. Rapid recovery of the water table from rapid recharge suggests that the lens either takes such recharge into storage very rapidly, discharges it rapidly without taking it into storage, or some combination of both. Significant vadose buffering of recharge to the lens is indicated by the fact that simulations assuming that the recharge from precipitation received in any given month is transmitted to the lens during the same month consistently over-predict observed peak mean monthly water levels and under-predict the minima. (C) 2002 Elsevier Science B.V. All rights reserved

Quantification of Macroscopic Subaerial Exposure Features in Carbonate Rocks, 2002, Budd Da, Gaswirth Sb, Oliver Wl,
The macroscopic features that characterize subaerial exposure surfaces in carbonates are well known, but their significance has not been quantitatively evaluated. This study presents such an analysis in the lower Oligocene Suwannee Limestone of west-central Florida. Eleven cores were point counted on a foot-by-foot basis for the abundance of caliche, rhizoliths, karst breccia, open vugs, infiltrated sediment, fractures, and pedogenic alteration. These features occur at and below intraformational exposure surfaces, which represent hiatuses estimated at 104 to 105 years, and an uppermost sequence-bounding unconformity representing 0.5 Myr, as revealed by Sr-isotope data. Statistical analyses of the point-count data reveal only a few significant relationships. (1) The hierarchy of exposure surfaces, and by inference duration of exposure, is differentiated only at a marginally significant level by sediment-filled vugs preferentially associated with the sequence boundary. Duration of exposure did not have a significant impact on the relative abundance of all other features. (2) Proximity (< 5 ft; 1.5 m) to any exposure surface is indicated only by rhizoliths, caliche, and pedogenic alteration, whereas karst breccia is preferentially found distal (> 5 ft) to both types of surfaces. Fractures, open vugs, and infiltrated sediment show no proximal or distal preference for either type of surface. (3) Depositional texture has no statistically significant affect on the presence or abundance of the exposure features, with the exception that rhizoliths and open vugs are preferentially more abundant in packstones relative to grainstones. This is interpreted to be the result of a soil-moisture effect. Factor analysis defines four factors that explain 46% to 52% of the total variance in the abundance data relative to the sequence boundary and the intraformational surfaces, respectively. The loading of each exposure feature on each factor is the same with respect to both types of surfaces, which is further evidence that the abundance of exposure features is independent of duration of exposure. Factor 1 is interpreted to be the amplitude of base-level changes and controls the abundance of karst breccia. Factor 2 is interpreted to be abundance of vegetation and relates to the abundance of rhizoliths and fractures. Factor 3 is interpreted to be a combination of soil-zone PCO2 and the availability of water and affects the abundance of pedogenic overprinting, caliche, and open vugs. Factor 4 is stratigraphic proximity to the sequence boundary, which controls the presence of sediment-filled voids. The amount of uncorrelated unique variance associated with infiltrated sediments, pedogenic overprinting, caliche, and open vugs is large (> 60%), meaning that feature abundance is also influenced by other unidentified site-specific factors. These results demonstrate that quantifying the abundance of macroscopic subaerial exposure features in limestones has the potential to yield more insight into the significance of those features than a mere qualitative assessment. This is particularly true when assessing the potential role of the many variables that can affect the development of these features

The sponge community in a semi-submerged temperate sea cave: Density, diversity and richness, 2002, Bell Jj,
The sponge communities inhabiting a temperate semi-submerged sea cave were investigated at Lough Hyne Marine Nature Reserve, Co. Cork, Ireland. Thirty-one species of sponge were reported, the majority of which exhibited either an encrusting or massive morphology. Sponge density (averaged over depth) increased with horizontal distance (5 m intervals) into the cave until approximately 30 m, corresponding to the maximum algal intrusion (algal information from Norton et al., 1971). Species diversity and richness (averaged over depth) were highest at 10 m horizontal distance from the cave entrance. Variability in sponge density, diversity and richness was observed with increasing vertical depth (0.5 m intervals) at most horizontal intervals sampled (5 m apart). These three variables increased initially with depth, but then decreased towards the seabed. Bray-Curtis Similarity Analysis and Multi-Dimensional Scaling (MDS) showed cave sponge community composition to have greater similarity (50%) with local loose rock habitats than the nearby cliffs. Similar processes structuring cave and loose rock sponge communities may account for this situation. Information collected from this and previous studies on the biotic (algal communities, other fauna and competition) and abiotic factors (water flow rate, depth, aerial exposure, light, cave morphology, nutrient depletion and humidity) affecting this and other caves is discussed with respect to its influence on the sponges inhabiting different parts of the cave. Although horizontal zonation patterns have been considered analogous to vertical distribution patterns for algal communities (due to similar decreases in light), this was not the case for the studied sponge communities

Results 16 to 30 of 59
You probably didn't submit anything to search for