Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That enthalpy is heat content [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for desert (Keyword) returned 66 results for the whole karstbase:
Showing 16 to 30 of 66
HOLOCENE MARINE CEMENT COATINGS ON BEACH-ROCKS OF THE ABU-DHABI COASTLINE (UAE) - ANALOGS FOR CEMENT FABRICS IN ANCIENT LIMESTONES, 1994, Kendall C. G. S. , Sadd J. L. , Alsharhan A. ,
Marine carbonate cements, which are superficially like travertines from meteoric caves, are coating and binding some intertidal sedimentary rock surfaces occurring in coastal Abu Dhabi, the United Arab Emirates, (UAE). Near Jebel Dhana these surficial cements can be up to 3 cm thick and envelope beach rock surfaces and fossils. They are also present both as thin coats and a fracture-fill cement in the intertidal hard grounds associated with the Khor Al Bazam algal flats. The thickness, microscopic characteristics, and morphology of the marine cement coatings from Jebel Dhana indicates incremental deposition of aragonite in conjunction with traces of sulfate minerals. Most of these cement coatings are micritic, but the layers which encrust the hard grounds from the algae flat of the Khor al Bazam have a more radial and fibrous micro-structure and are composed solely of aragonite. The stable isotopic composition of coatings from Jebel Dhana (delta(18)O = .35, delta(13)C = .00) falls within the compositional range for modem marine non skeletal aragonite and suggests that the marine travertine-like cements precipitate from the agitated slightly hypersaline Arabian Gulf sea water during repeated cycles of exposure, evaporation and immersion. Similar cement coatings and microfabrics are present in the tepee structured and brecciated sediments of the Guadalupe Mountains (Permian) and the Italian Alps (Triassic), in Holocene algal head cements from the Great Salt Lace, and in similar Tertiary algal heads in the Green River Formation of the western US. The petrographic similarity of these ancient ''flow stone'' like cements with Recent hypersaline marine cement coatings suggests that high rates of carbonate cementation and hypersaline conditions contribute to tepee formation and cavity fill

Guab As, une grotte dans de la dolomie mgascristalline hydrothermale (Namibie occidentale), 1995, Marais E. , Martini J. , Irish J.
The authors describe a cave in the semi-desert area of the Hakos Mountains, 100km to the southwest of Windhoek, Namibia. The cave is significant due to the very unusual country rock, with which it is associated. It formed by dissolution of the dolomite core of a large quartz vein, which is 800 m long and 200 m wide, developed in mica-schist. The cave consists of a complex succession of large chambers, more or less overlapping each others, with walls generally consisting of quartz. In most instances the dolomite has been completely dissolved or occurs under the floor, concealed by dust and scree. Although the cave developed within a very small volume of carbonate, the total length reaches 695 m and the depth 85 m. The bottom is occu-pied by a pool which is only temporarily filled with water and probably marks the position of a perched water-table. The cave formed in a perched phreatic environment during an undetermined period

Sannur Cave: A Crescent shaped cave developed in Alabaster formation in Eastern Desert, Egypt, 1995, Gü, Nay G. , Elbedewy F. , Ekmekci M. , Bayari S. , Kurttas T.
An expedition to Egypt set out to explore the Wadi Sannur where no speleological work had taken place. The most notable karst feature identified to date is the Sannur Cave, the largest subterranean chamber known in Egypt. It is situated about 70 km to the southeast of Beni-Suef city in the remote Wadi Sannur of the Eastern Desert where the main rock units belong to Eocene and Pliocene periods. The Eocene is represented by limestone including alabaster which is known to be quarried first by the ancient Egyptians. Sannur Cave is first explored during blasting in the alabaster quarry which caused an artificial entrance to the cave. The cave is a single crescent shape chamber approximately 275 m long and can be arbitrarily divided into two sectionshaving different characteristics; left side gallery and right side gallery. Few speleothems occur in the left side gallery while the right side gallery is decorated intensively with many kinds of spelethem including stalagtites, stalagmites, flowstones, microgours, helictites and soda-straws etc. In addition to surveying the cave, based on the geologic, structural and morphologic observation inside and outside the cave some interpretations on the paleoenvironment an the origin of the cave. Surveying was performed with grade 5D according to BCRA Gradings.

Peculiar landforms in the gypsum karst of Sorbas (southeastern Spain), 1997, Calaforra Jm, Pulidobosch A,
The gypsum karst of Sorbas is developed in selenitic Messinnian gypsum, the sequence being about 120 meters in depth. Within an outcrop of only 12 km(2) there is a great variety of karstic forms, among which the high density of dolines and cavities (over 1000 identified to date) is a notable feature. There also exist many and varied karren landforms, interstratification forms, and tumuli. The karren landforms are strongly developed and are of diverse types. There are also examples of microkarren and nanokarren, such as exfoliation karren or dissolved vacuoles determined by the texture and gypsum crystalline orientation Some of these forms are unique to gypsum materials and have been described for the first time in this area The interstratal erosion karst is very well developed due to the marry intercalations existing in the gypsum deposits. This circumstance determined the speleogenesis of the area, with the formation of galleries following the stratification planes. With this structure, the gypsum strata are little altered, and erosion of the marry strata occurs. In some zones, there is an erosive interstratification karst The tumuli are hollow subcircular domes of the most superficial layer of the gypsum, with sizes varying from a few centimeters to several meters in diameter. Their origin is determined by processes of intercrystalline solution and precipitation, together with the capillary movement of the interstitial water in the gypsum stratum. Their development is related to the abrupt changes in temperature and humidity that are characteristic of semidesert zones such as Sorbas

Causes of land subsidence in the Kingdom of Saudi Arabia, 1997, Amin A, Bankher K,
The occurrence of land subsidence in the Kingdom Saudi Arabia is either natural or manmade. Natural land subsidence occurs due to the development of subterranean voids by a solution of host rocks in carbonate and evaporite terrains, over many areas of Saudi Arabia. Man-induced land subsidence is either due to the removal of groundwater in the agricultural areas or to wetting of unstable soils. Therefore, earth fissures and a lowering of the ground surface in unconsolidated sediments took place in alluvial plains and volcanic vent terrains. Unstable soils include Sabkha soils and loess sediments. These types of soils occur in coastal plains, desert areas and volcanic terrains. When this soil is wetted either during agricultural activities, waste disposal or even during a rain storm, subsidence takes place due to either the removal of salts from the Sabkha soil or the rearrangement of soil particles in loess sediments

Geological Characteristics of Desert and Upper Desert Caves (NE Blue Diamond Hill, Nevada, USA), 1998, Š, Ebela Stanka, Hess John W.

Desert Cave (72 m) and Upper Desert Cave (62 m) are the longest known caves in Blue Diamond Hill and are situated in one of its canyons. Caves are developed in limestone of latest early Permian age (Kaibab formation). In lowest part of Desert Cave, which is 12,6 m deep, cave passage reaches lithological contact between Kaibab limestone and sedimentary breccia (lower part of Kaibab formation). The contact breccia-limestone is one of initial structures in phreatic period of cave development but not before Mesozoic thrusting tectonics. Surface distance between entrances to Desert and Upper Desert Cave is 81 m, the caves are not connected. Desert Cave is situated 2 km W from Bird Spring thrust. Prevailing fissure directions in the cave are NW-SE and NE-SW. Passage direction is almost parallel with the NE-SW fissures direction. There is obvious connection in occurrence of breakdown in the cave with strongly expressed fissures in NW-SE direction.


Land use and human impact in the Dinaric karst, 1999, Gabrovec Matej, Gams Ivan.
The artice presents Dinaric karst, human impacts in the area, and its long history of deforestation, transformation into stony semi-desert, and a century long reforestation, where plans to restore the primary thick soil were just hoping against hope.

From desert to deluge in the Mediterranean, 1999, Mckenzie Judith A. ,

Sources et hydrosystmes karstiques des rgions arides et semi-arides, essai gographique, 2000, Nicod, Jean
SPRINGS AND KARSTIC HYDROSYSTEMS IN THE ARID AND SEMI-ARID AREAS. A GEOGRAPHICAL ESSAY - The patterns of the main springs and hydrosystems in the deserts and surroundings are sorted, according to their geomorphological situation (piedmont, coastal or inner plateau), to structure of the aquifers and working of groundwater (storage capacity, artesian systems) and to the hydrochemical criteria particularly the solute load in Mg2+, SO42- and Cl-. From the best known examples, the main problems on the genesis and working of the karstic hydro-systems in arid environment are discussed: - the incidence of tectonic stress and paleokarstic and paleoclimatic inheritances; - the recent periods of recharge (in Northern Sahara and Near and Middle East); - the interactions in ionic solutions and hyper-karstic processes: particular_ly with the strong acid, H2SO4, the "double solvency effect", and the mixing water corrosion near the salt water wedge in the coastal karsts.

Characteristics of karst ecosystems of Vietnam and their vulnerability to human impact, 2001, Tuyet D. ,
Karst in Vietnam covers an area of about 60,000 km(2), i.e. 18 % of the surface of the country. The country has an annual average temperature of 24 degreesC, an annual average rainfall of 2300 nun and a relative humidity of about 90%. Karst in Vietnam is typified by peak cluster-depression landscapes ranging in elevation from 200 to over 2000 m. Tower and coastal karst landscapes also exit. Because of naturally favourable conditions, karst ecosystems are diverse and very rich. Higher plants(cormophytes) are abundant. They are represented by approximately 2000 species, 908 genera, 224 families, 86 orders and 7 phyla. They form a thick vegetation cover of evergreen tropical rainforest. Knowledge about lower plants is limited. The fauna is rich and diverse. Phyla such as Protozoa, Vermes, Mollusca and Arthropoda are yet ill known. Preliminary results show that the phylum Chordata is represented by 541 species from 80 families, 40 orders and 5 classes. There exist many precious and rare mammals, in particular some endemic species such as Trachypithecus poliocephalus, T. delacouri, Rhinopithecus avanculus, Rhinolophus rouxi, Seotoma dineties and Silurus cuephuongensis. The class Insecta has about 2000 species. The fast population growth, particularly in the mountainous areas of the country, triggers an increasing demand for land and therefore threatens the ecosystem. To obtain land for farming, people have cut, burned and destroyed natural forest cover; resulting in occurrence of hazards such as soil-loss, water-loss, flash floods, mud-rock flows, rock-falls, severe drought, water logging and changes of karstic aquifers etc. Poaching precious animals and illegal logging are increasing. In contrast to other natural systems, karst ecosystems cannot be reestablished once damaged. Living karst landscapes will become rocky desert ones without life. Conservation of karstic environmental systems in general and karstic ecosystems in particular should not be the sole vocation of scientists but also a duty and responsibility of authorities and people from all levels. A good example of a multidisciplinary approach to karst-related problems is the implementation of the Vietnamese-Belgian Karst Project (VBEKAP): 'Rural development in the mountain karst area of NW Vietnam by sustainable water and land management and social learning: its conditions and facilitation'. The aim of this project is to improve living conditions of local people and sustained protection and management of the karst environment and ecosystem

Geological hazards in loess terrain, with particular reference to the loess regions of China, 2001, Derbyshire E,
The considerable morphodynamic energy provided by the continuing tectonic evolution of Asia is expressed in high erosional potentials and very high rates of sediment production that make this continent unequalled as a terrestrial source of primary silt. Many of these environments are hazardous, threatening human occupation., health and livelihood, especially in regions of dense population such as the loess lands of north China. Dry loess can sustain nearly vertical slopes, being perennially under-saturated. However, when locally saturated, it disaggregates instantaneously. Such hydrocompaction is a key process in many slope failures, made worse by an underlying mountainous terrain of low-porosity rocks. Gully erosion of loess may yield very high sediment concentrations ( > 60% by weight). Characteristic vertical jointing in loess influences the hydrology. Enlarged joints develop into natural sub-surface piping systems, which on collapse, produce a 'loess karst' terrain. Collapsible loess up to 20 m thick is common on the western Loess Plateau. Foundation collapse and cracked walls are common, many rapid events following periods of unusually heavy monsoonal rain. Slope failure is a major engineering problem in thick loess terrain, flow-slide and spread types being common. The results are often devastating in both urban and rural areas. An associated hazard is the damming of streams by landslides. The human population increases the landslide risk in China, notably through imprudent land-use practices including careless water management. A number of environmentally related endemic diseases arise from the geochemistry of loess and its groundwaters. including fluorosis, cretinism, Kaschin-Beck Disease, Keshan Disease and goitre. The Chinese desert margins also have a major atmospheric dust problem. The effect of such dust upon human health in these extensive regions, including many large cities, has yet to be evaluated, but pneumoconiosis is thought to affect several million people in north and west China. (C) 2001 Elsevier Science B.V. All rights reserved

The sequence stratigraphy, sedimentology, and economic importance of evaporite-carbonate transitions: a review, 2001, Sarg J. F. ,
World-class hydrocarbon accumulations occur in many ancient evaporite-related basins. Seals and traps of such accumulations are, in many cases, controlled by the stratigraphic distribution of carbonate-evaporite facies transitions. Evaporites may occur in each of the systems tracts within depositional sequences. Thick evaporite successions are best developed during sea level lowstands due to evaporative drawdown. Type 1 lowstand evaporite systems are characterized by thick wedges that fill basin centers, and onlap basin margins. Very thick successions (i.e. saline giants) represent 2nd-order supersequence set (20-50 m.y.) lowstand systems that cap basin fills, and provide the ultimate top seals for the hydrocarbons contained within such basins.Where slope carbonate buildups occur, lowstand evaporites that onlap and overlap these buildups show a lateral facies mosaic directly related to the paleo-relief of the buildups. This facies mosaic, as exemplified in the Silurian of the Michigan basin, ranges from nodular mosaic anhydrite of supratidal sabkha origin deposited over the crests of the buildups, to downslope subaqueous facies of bedded massive/mosaic anhydrite and allochthonous dolomite-anhydrite breccias. Facies transitions near the updip onlap edges of evaporite wedges can provide lateral seals to hydrocarbons. Porous dolomites at the updip edges of lowstand evaporites will trap hydrocarbons where they onlap nonporous platform slope deposits. The Desert Creek Member of the Paradox Formation illustrates this transition. On the margins of the giant Aneth oil field in southeastern Utah, separate downdip oil pools have accumulated where dolomudstones and dolowackestones with microcrystalline porosity onlap the underlying highstand platform slope.Where lowstand carbonate units exist in arid basins, the updip facies change from carbonates to evaporite-rich facies can also provide traps for hydrocarbons. The change from porous dolomites composed of high-energy, shallow water grainstones and packstones to nonporous evaporitic lagoonal dolomite and sabkha anhydrite occurs in the Upper Permian San Andres/Grayburg sequences of the Permian basin. This facies change provides the trap for secondary oil pools on the basinward flanks of fields that are productive from highstand facies identical to the lowstand dolograinstones. Type 2 lowstand systems, like the Smackover Limestone of the Gulf of Mexico, show a similar relationship. Commonly, these evaporite systems are a facies mosaic of salina and sabkha evaporites admixed with wadi siliciclastics. They overlie and seal highstand carbonate platforms containing reservoir facies of shoalwater nonskeletal and skeletal grainstones. Further basinward these evaporites change facies into similar porous platform facies, and contain separate hydrocarbon traps.Transgressions in arid settings over underfilled platforms (e.g. Zechstein (Permian) of Europe; Ferry Lake Anhydrite (Cretaceous), Gulf of Mexico) can result in deposition of alternating cyclic carbonates and evaporites in broad, shallow subaqueous hypersaline environments. Evaporites include bedded and palmate gypsum layers. Mudstones and wackestones are deposited in mesosaline, shallow subtidal to low intertidal environments during periodic flooding of the platform interior.Highstand systems tracts are characterized by thick successions of m-scale, brining upward parasequences in platform interior settings. The Seven Rivers Formation (Guadalupian) of the Permian basin typifies this transition. An intertonguing of carbonate and sulfates is interpreted to occur in a broad, shallow subaqueous hypersaline shelf lagoon behind the main restricting shelf-edge carbonate complex. Underlying paleodepositional highs appear to control the position of the initial facies transition. Periodic flooding of the shelf interior results in widespread carbonate deposition comprised of mesosaline, skeletal-poor peloid dolowackestones/mudstones. Progressive restriction due to active carbonate deposition and/or an environment of net evaporation causes brining upward and deposition of lagoonal gypsum. Condensed sections of organic-rich black lime mudstones occur in basinal areas seaward of the transgressive and highstand carbonate platforms and have sourced significant quantities of hydrocarbons

Karst and caves of Israel, 2001, Frumkin, A.
Israel displays a gradient of karst features from the intensive karstification of Lebanon in the north to practically no karst in Elat region at the southern Negev desert (Gerson, 1976). This is attributed mainly to the climatological gradient from alpine-Mediterranean climate in the Lebanon - Hermon mountains in the north, with precipitation >1000 mm/year, to the extremely arid southern Negev, with <50 mm/year. Another factor is the southward decrease in carbonates/clastics ratio of the phanerozoic stratigraphic section, due to the increasing distance from the Tethys Sea which deposited the significant carbonates. Carbonate rocks outcrop in some 75% of the hilly regions of Israel. They are predominantly of Jurassic to Eocene age. However, much of the carbonates contain marls which inhibit extensive karst development, promoting the dominance of fluviokarst features. Another inhibiting factor is the abundance of faults in the Hermon, Galil and Shomeron regions. The faults are thought to constrain the temporal and spatial continuous underground flow, limiting the development of large caves in these regions. Most limestone caves are relict phreatic conduits and voids, which do not show any genetic relation to subaerial topography. Today these caves are either dry or experience vadose dripwater. These caves have possibly developed under moister conditions than predominate today. Some of them have been sealed from the surface until opened by recent construction activity. They may contain valuable paleoclimatic records (Frumkin, et al., 1994). Vadose caves are also common, and typically experience some water flow and active dissolution during the rainy season. These are mostly composed of vertical shafts with rare horizontal sections. The unique rock salt karst of Mount Sedom exhibits the largest salt caves known in the world. Some sea caves, attributed mainly to wave action with limited dissolution appear in the 'Kurkar' sandstone ridge along the Mediterranean coast. Paleokarst is common in the stratigraphic section, and is probably related to humid paleoclimates. Israel is especially rich in man made caves sustaining abundant fauna, but are beyond the scope of this review.

Existence of karsts into silicated non-carbonated crystalline rocks in Sahelian and Equatorial Africa, hydrogeological implications, 2002, Willems Luc, Pouclet Andre, Vicat Jean Paul,
Various cavities studied in western Niger and South Cameroon show the existence of important karstic phenomena into metagabbros and gneisses. These large-sized caves resulted from generalized dissolution of silicate formations in spite of their low solubility. Karstification is produced by deep hydrous transfer along lithological discontinuities and fracture net works. The existence of such caves has major implications in geomorphology, under either Sahelian and Equatorial climate, and in hydrogeology and water supply, particularly in the Sahel area. Introduction. - Since a few decades, several karst-like morphologies are described in non-carbonated rocks (sandstones, quartzites, schistes, gneisses...) [Wray, 1997 ; Vicat and Willems, 1998 ; Willems, 2000]. The cave of Guessedoundou in West Niger seems to be due to a large dissolution of metagabbros. The cave of Mfoula, South Cameroon, attests for the same process in gneisses. This forms proof that big holes may exist deeper in the substratum even of non-carbonated silicate rocks. Their size and number could mainly influence the landscape and the hydrogeology, especially in the Sahelian areas. Guessedoundou, a cave into metagabbros in West Niger. - The site of Guessedoundou is located 70 km south-west of Niamey (fig. 1). The cave is opened at the top of a small hill, inside in NNE-SSW elongated pit (fig. 2 ; pl. I A). The hole, 3 to 4 m deep and 20 m large, has vertical walls and contains numerous sub-metric angular blocks. A cave, a few meters deep, comes out the south wall. Bedrocks consist of metagabbros of the Makalondi greenstone belt, a belt of the Palaeoproterozoic Birimian Formations of the West Africa craton [Pouclet et al., 1990]. The rock has a common granular texture with plagioclases, partly converted in albite and clinozoisite, and pyroxenes pseudomorphosed in actinote and chlorite. It is rather fairly altered. Chemical composition is mafic and poorly alkaline (tabl. I). A weak E-W schistosity generated with the epizonal thermometamorphism. The site depression was created along a N010o shear zone where rocks suffered important fracturation and fluid transfers, as shown by its silification and ferruginisation. The absence of human activity traces and the disposition of the angular blocks attest that the pit is natural and was due to the collapse of the roof of a vast cavity whose current cave is only the residual prolongation. To the vertical walls of the depression and at the cave entry, pluridecimetric hemispheric hollows are observed (pl. I B). Smooth morphology and position of these hollows sheltered within the depression dismiss the assumptions of formation by mechanical erosion. In return, these features are typical shape of dissolution processes observed into limestone karstic caves. That kind of process must be invoked to explain the opening of the Guessedoundou cave, in the total lack of desagregation materials. Dissolution of metagabbro occurred during hydrous transfer, which was probably guided by numerous fractures of the shear zone. Additional observations have been done in the Sirba Valley, where similar metabasite rocks constitute the substratum, with sudden sinking of doline-like depressions and evidence of deep cavities by core logging [Willems et al., 1993, 1996]. It is concluded that karstic phenomena may exist even in silica-aluminous rocks of crystalline terrains, such as the greenstones of a Precambrian craton. Mfoula a cave into gneisses in South Cameroon. - The cave of Mfoula is located 80 km north-east of Yaounde (fig. 3). It is the second largest cave of Cameroon, more than 5,000 m3, with a large opening in the lower flank of a deep valley (pl. I C). The cavity is about 60 m long, 30 m large and 5 to 12 m high (fig. 4; pl. I D). It is hollowed in orthogneisses belonging to the Pan-African Yaounde nappe. Rocks exhibit subhorizontal foliation in two superposed lithological facies: the lower part is made of amphibole- and garnet-bearing layered gneisses, and the upper part, of more massive granulitic gneisses. Average composition is silico-aluminous and moderately alkaline (tabl. I). The cave is made of different chambers separated by sub-cylindrical pillars. The ceiling of the main chamber, 6 m in diameter, is dome-shaped with a smooth surface (D, fig. 4). The walls have also a smooth aspect decorated with many hemispherical hollows. The floor is flat according to the rock foliation. They are very few rock debris and detrital fragments and no traces of mechanical erosion and transport. The general inner morphology is amazingly similar to that of a limestone cave. The only way to generate such a cavity is to dissolve the rock by water transfer. To test the effect of the dissolution process, we analysed a clayey residual sampled in an horizontal fracture of the floor (tabl. I). Alteration begins by plagioclases in producing clay minerals and in disagregating the rock. However, there is no more clay and sand material. That means all the silicate minerals must have been eliminated. Dissolution of silicates is a known process in sandstone and quartzite caves. It may work as well in gneisses. To fasten the chemical action, we may consider an additional microbial chemolitotrophe activity. The activity of bacteria colonies is known in various rocks and depths, mainly in the aquifer [Sinclair and Ghiorse, 1989 ; Stevens and McKinley, 1995]. The formation of the Mfoula cave is summarized as follow (fig. 5). Meteoric water is drained down along sub-vertical fractures and then along horizontal discontinuities of the foliation, particularly in case of lithological variations. Chemical and biological dissolution is working. Lateral transfers linked to the aquifer oscillations caused widening of the caves. Dissolved products are transported by the vertical drains. Regressive erosion of the valley, linked to the epeirogenic upwelling due to the volcano-tectonic activity of the Cameroon Line, makes the cavities come into sight at the valley flanks. Discussion and conclusion. - The two examples of the Guessedoundou and Mfoula caves evidence the reality of the karsts in non-carbonated silicated rocks. The karst term is used to design >> any features of the classical karst morphology (caves, dolines, lapies...) where dissolution plays the main genetical action >> [Willems, 2000]. Our observations indicate that (i) the karst genesis may have occurred into any kind of rocks, and (ii) the cave formation is not directly dependent of the present climate. These facts have major consequences to hydrogeological investigations, especially for water supply in Sahelian and sub-desertic countries. Some measurements of water transfer speed across either sedimentary pelitic strata of the Continental terminal or igneous rocks of the substratum in West Niger [Esteves and Lenoir, 1996 ; Ousmane et al., 1984] proved that supplying of aquifers in these silico-aluminous rocks may be as fast as in a karstic limestone. That means the West Niger substratum is highly invaded by a karstic net and may hidden a lot of discontinuous aquifers. The existence of this karst system can be easily shown by morphological observations, the same that are done in karstic limestone regions (abnormally suspended dry valleys, collapses, dolines...). Clearly, this must be the guide for any search of water, even in desertic areas where limestones are absent

Djara Cave in the Western Desert of Egypt: Morphology and evidence of Quaternary climatic change, 2003, Brook G. A. , Embabi N. S. , Ashour M. M. , Edwards R. L. , Hai Cheng Cowart J. B, Dabous A. A.

Results 16 to 30 of 66
You probably didn't submit anything to search for