MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_left.php on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That drowned karst is karst topography that is submerged by a change in sea level or lake level. synonym: karst noye. see also subaqueous karst.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for deformation (Keyword) returned 96 results for the whole karstbase:
Showing 16 to 30 of 96
Petroleum geology of the Black Sea, 1996,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Robinson A. G. , Rudat J. H. , Banks C. J. , Wiles R. L. F. ,
The Black Sea comprises two extensional basins formed in a back-arc setting above the northward subducting Tethys Ocean, close to the southern margin of Eurasia. The two basins coalesced late in their post-rift phases in the Pliocene, forming the present single depocentre. The Western Black Sea was initiated in the Aptian, when a part of the Moesian Platform (now the Western Pontides of Turkey) began to rift and move away to the south-east. The Eastern Black Sea probably formed by separation of the Mid-Black Sea High from the Shatsky Ridge during the Palaeocene to Eocene. Subsequent to rifting, the basins were the sites of mainly deep water deposition; only during the Late Miocene was there a major sea-level fall, leading to the development of a relatively shallow lake. Most of the margins of the Black Sea have been extensively modified by Late Eocene to recent compression associated with closure of the Tethys Ocean. Gas chromatography--mass spectrometry and carbon isotope analysis of petroleum and rock extracts suggest that most petroleum occurrences around the Black Sea can be explained by generation from an oil-prone source rock of most probably Late Eocene age (although a wider age range is possible in the basin centres). Burial history modelling and source kitchen mapping indicate that this unit is currently generating both oil and gas in the post-rift basin. A Palaeozoic source rock may have generated gas condensate in the Gulf of Odessa. In Bulgarian waters, the main plays are associated with the development of an Eocene foreland basin (Kamchia Trough) and in extensional structures related to Western Black Sea rifting. The latter continue into the Romanian shelf where there is also potential in rollover anticlines due to gravity sliding of Neogene sediments. In the Gulf of Odessa gas condensate has been discovered in several compressional anticlines and there is potential in older extensional structures. Small gas and oil discoveries around the Sea of Azov point to further potential offshore around the Central Azov High. In offshore Russia and Georgia there are large culminations on the Shatsky Ridge, but these are mainly in deep water and may have poor reservoirs. There are small compressional structures off the northern Turkish coast related to the Pontide deformation; these may include Eocene turbidite reservoirs. The extensional fault blocks of the Andrusov Ridge (Mid-Black Sea High) are seen as having the best potential for large hydrocarbon volumes, but in 2200 m of water

Deformation alpines, inversion tectonique negative et karstogenese; exemple de la Pierre Saint-Martin (Pyrenees-Atlantiques, France), 1997,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Hervouet Yves,

Geomorphology of the Tertiary gypsum formations in the Ebro Depression (Spain), 1998,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Elorza Mg, Santolalla Fg,
This paper reviews the current knowledge of the mainly karstic geomorphological features developed in the evaporitic formations of the Ebro Depression (northern Spain). Special emphasis is given to the recently published and unpublished scientific advances. The gypsum formations, of Tertiary age, have an extensive outcrop area within the Ebro Depression. Here, their morphogenesis is controlled mainly by processes of surface and subsurface dissolution acting on the gypsum. Outstanding landforms in the gypsum terrain include saline lakes developed in flat bottom dolines (saladas). Other characteristic morphologies include karren and gypsum domes, which occur on a decimetre scale. Where the gypsum is covered by Quaternary alluvial deposits the karstification processes are especially intense and cause subsidence phenomena. Karstic subsidence affects stream terraces, mantled pediments and infilled valleys, which in the region are called vales. Dissolution-induced synsedimentary subsidence has produced interesting geological features, which include significant thickening and deformation of the alluvial deposits. In contrast to the rapid removal of gypsum by dissolution, the amount of gypsum removed by erosion is low. Water erosion studies carried out on gypsiferous slopes of the Ebro Depression, indicate that the sediment yield ranges from 0.59 to 7.82 t/ha/year. This low yield results from the high infiltration capacity of the soils. Subsidence caused by gypsum dissolution has important socioeconomic consequences in the Ebro Depression. The active alluvial karstification of the gypsum causes numerous sinkholes that are harmful to linear structures (roads, railway Lines, irrigation channels), buildings and agricultural land. Unforeseen catastrophic subsidence also puts human Lives at risk. The benefits of such terrains include thickened alluvial deposits which act as valuable water reservoirs and which form excellent sources of aggregates. Fluvial valleys in this gypsiferous terrain commonly show an asymmetrical geometry with prominent gypsum scarps at one side. These gypsum scarps are affected by numerous landslides. These slope movements are hazardous, may dam rivers and cause flooding of the alluvial plains. (C) 1998 Elsevier Science B.V. All rights reserved

Contribution to knowledge of gypsum karstology, PhD thesis, 1998,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Calaforra Chordi, J. M.

The objective of this study was not to establish a definitive judgement regarding a topic for which very little previous information was available, but rather to open new routes for research into karst by means of a particularized analysis of some of the factors involved in the speleogenesis of gypsiferous materials. The main obstacle to the attainment of this goal has been the scientific community's lack of interest in karst in gypsum, particularly in our country, until the nineteen eighties. To overcome this neglect it was decided, in my opinion quite correctly, to extend the bounds of the study as far as possible, so that the information obtained from the contrast found between the most important worldwide zones of karst in gypsum could be applied to the gypsiferous karst in our country, and in particular, to the most significant, the karst in gypsum of Sorbas.
This is the justification for the numerous references in the text to the gypsiferous karst and cavities in gypsum that are most relevant in Spain (Sorbas, Gobantes, Vallada, Archidona, Estremera, Baena, the Ebro Basin, Estella, Beuda, Borreda, etc.) and also to the best-known gypsiferous karsts worldwide (Podolia, Secchia, Venna del Gesso Romagnolo, Sicily and New Mexico). By means of these comparisons, the initial lack of information has been overcome.
The study is based on three central tenets, which are interrelated and make up the first three chapters of this report. The first consideration was to attempt to characterize the particular typology of gypsiferous karst from the geological (both stratigraphic and structural) point of view. This chapter also provides an introduction to each of the gypsiferous karsts examined. The second chapter is dedicated to the geomorphology of gypsiferous karst, under both superficial and subterranean aspects. It is important to note that the study of a gypsiferous karst from the speleological point of view is something that may seem somewhat unusual; however, this is one of the points of principle of this paper, the attempt to recover the true meaning of a word that has historically been unfairly condemned by a large part of the Spanish scientific community. Thirdly, a detailed study has been made of the hydrochemistry of the most important gypsiferous karsts in our region, together with the presentation of a specific analytical methodology for the treatment of the hydrochemical data applicable to the gypsiferous karst.
Geological characterization of gypsum karst
In the characterization of karst in gypsum, the intention was to cover virtually all the possibilities from the stratigraphic and structural standpoints. Thus, there is a description of widely varying gypsiferous karsts, made up of Triassic to Miocene materials, some with a complex tectonic configuration and others hardly affected by folding. The gypsiferous karsts described, and their most significant geological characteristics, are as follows:
Karst in gypsum at Sorbas (Almeria): composed of Miocene gypsiferous levels with the essential characteristic of very continuous marly interstrata between the layers of gypsum, which decisively affect the speleogenesis of the area. The gypsum layers have an average thickness of about 10 m and, together with the fracturing in the zone, determine the development of the gypsiferous cavities. These are mainly selenitic gypsum - occasionally with a crystal size of over 2 m - and their texture also has a geomorphologic and hydrogeologic influence. This area is little affected by folding and so the tectonic influence of speleogenesis is reduced to the configuration of the fracturing.
The Triassic of Antequera (Malaga): this is, fundamentally, the gypsiferous outcrop at Gobantes-Meliones, originating in the Triassic and located within the well-known "Trias" of Antequera. It is made up of very chaotic gypsiferous materials containing a large quantity of heterometric blocks of varied composition; the formation may be defined as a Miocene olitostromic gypsiferous breccia that is affected by important diapiric phenomena. The presence of hypersoluble salts at depth is significant in the modification of the hydrochemical characteristics of the water and in the speleogenetic development of the karst.
The Triassic of Vallada (Valencia): Triassic materials outcrop in the Vallada area; these mainly correspond to the K5 and K4 formations of the Valencia Group, massive gypsum and gypsiferous clays. The influence of dolomitic intercalations in the sequence is crucial to the speleogenesis of the area and this, together with intense tectonic activity, has led to the development in this sector of the deepest gypsiferous cavity in the world: the "Tunel dels Sumidors". As in the above case, the presence of hypersoluble salts at depth and the varied lithology influence the variations in the hydrodynamics and hydrochemistry of the gypsiferous aquifer.
Other Spanish gypsum karsts: this heading covers a group of gypsiferous areas and cavities of significant interest from the speleogenetic standpoint. They include the area of Estremera (Madrid), with Miocene gypsiferous clays and massive gypsum arranged along a large horizontal layer; this has produced the development of the only gypsiferous cavity in Spain with maze configuration, the Pedro Fernandez cave. The study of this cave has important hydrogeological implications with respect to speleogenesis in gypsum in phreatic conditions. The Baena (Cordoba) sector, in terms of its lithology, is comparable to the "Trias de Antequera". Here, the cavities developed in gypsiferous conglomerates, following structural discontinuities have enabled contact between carbonate and gypsiferous levels, and so we may speak of a mixed karstification: a karst in calcareous rocks and gypsum. The karst of Archidona (Malaga) is similar to that of the Gobantes-Meliones group and is significant because of the geomorphologic evolution of the karst, which is related to the diapiric ascent of the area and the formation of karstic ravines. The karst in the Miocene and Oligocene gypsum of the Ebro Basin (Zaragoza), has been taken as a characteristic example of a gypsiferous karst developed under an alluvial cover, with the corresponding geomorphological implications in the evolution of the surface landforms. In the gypsiferous area of Borreda (Barcelona), the presence of anhydritic levels in the sequence might have influenced the speleogenesis of its cavities. The cavity of La Mosquera, in Beuda (Girona), developed in massive Paleogene gypsum. This is the only Spanish example of a phreatic gypsiferous cavity developed in saccaroid gypsum, which is related to the particular subterranean morphology discovered. Finally, this group includes other Spanish gypsiferous outcrops visited during the preparation of this report, the references to which may be found in the relevant chapters.
Karst in gypsum in Europe and America: In order to complete the study of karst in gypsum, and with the idea of using all the available data on the karstology of gypsiferous materials for comparative studies of data for our country, a complementary activity was to define the most significant geological characteristics of the most important gypsiferous karsts in the world. An outstanding example is the gypsiferous karst at Podolia (Ukraine), developed in microcrystalline Miocene gypsum which has undergone block tectonics related to the collapse of the Precarpatic foredeep. This gypsum provides interesting data on speleogenesis in gypsiferous materials, as its evolution is related to the confining of the only gypsiferous stratum (of 10 to 20 m depth) producing interconnected labyrinthine galleries of over 100 km in length. Another well-known karst in gypsum is the one located at "Venna del Gesso Romagnolo" (Italy), in the Bologna region, with a lithology that is very similar to that which developed at Sorbas, but with the difference that it underwent more intense tectonics with folding and fracturing of the Tertiary sediments of the Po basin. In the same Italian province, in "L'alta Val di Sec-chia", there are outcrops of karstified Triassic materials which correspond to the formation of Burano, composed of gypsum and anhydrite with hypersoluble salts at depth and very notable diapiric phenomena. The study of this area has been used for a comparative analysis - geomorphology and hydrogeochemistry - with the Spanish gypsiferous karsts developed in Triassic levels. The third Italian gypsiferous karst to be considered is the one developed in Sicily, which has extensive Messinian outcrops of microcrystalline and selenitic gypsum as well as a great variety of lithologic types within the gypsiferous sequence, which we term the "gessoso solfifera" sequence. This gypsiferous karst is especially interesting from the geomorphologic standpoint due to the great quantity and variety of present superficial karstic forms. This has also served as a guide for the study of Spanish gypsiferous karsts. Finally, considering the relation between climatology and the development of karstic forms, we have also studied the karst in gypsum in New Mexico, where there is an extensive outcrop of Permian gypsum, both micro and macrocrystalline, situated on a large platform almost unaffected by deformation, and where the conditions of aridity are very similar to those found in the gypsiferous karst of Sorbas.
Geomorphological characterization of gypsum karst
From the geomorphological standpoint, the intention is to give an overview of the great variety of karstic forms developed in gypsum, traditionally considered less important than those developed in carbonate areas. This report shows this is not the case.
The theory of Convergence of Forms has been shown to be an efficient tool for the study of the morphology of karst in gypsum. Here, its principles have been used to provide genetic explanations for various gypsiferous forms derived from carbonate studies, and for the reverse case. In fact, studying a karst in gypsum is like having available a geomorphological laboratory where not only are the processes faster but they are also applicable to the karstology of carbonate rocks.
A large number of minor karstic forms (Karren) have been identified. The most important factors conditioning their formation are the texture of the rock, climatology and the presence of overlying deposits. The first, particularly, is largely responsible for determining the abundance of certain forms with respect to others. Thus, Rillenkarren, Trittkarren and small "kamenitzas" are more frequently found in microcrystalline and sandstone gypsum (for example, karst in gypsum in Sicily (Italy) and Va-llada (Valencia, Spain). Others seem to be more exclusive to selenitic gypsum, such as exfoliation microkarren, or are closely related to the climatology of the area (Spitzkarren develops from the alteration of gypsum in semiarid conditions). Others are related either to the presence of developed soil cover (Rundkarren, using Convergence of Forms), or to their specific situation (candelas and Wallkarren around dolines and sinkholes) or to the microtexture of the gypsum and the orientation of the 010 and 111 crystalline planes and twinning planes for the development of nanokarren.
The tumuli are the most peculiar forms of the Sorbas karst in gypsum, though they have also been identified in other gypsiferous karsts (Bolonia, New Mexico, Vallada, etc.). These are subcircular domes of the most superficial layer of the gypsum. Their formation has been related to processes of precipitation-solution and of capillary movement through the gypsiferous matrix. Their extensive development is largely determined by the climatology of the area and by the structural organization. It is therefore clear that the best examples are found in the karst of Sorbas due to the abrupt changes in temperature and humidity that occur in a semiarid climate, and because of the horizontality of the gypsiferous sequence.
Karst in gypsum and its larger exokarstic forms, apart from being climatically determined, also depend on the structural state and lithological determinants of the area. Thus, it is possible to differentiate between gypsiferous karsts where the lithology, together with erosive breakup, is more important (Sorbas and New Mexico) and others where confining hydraulic conditions persist (Estremera and Podolia). In other cases, tectonics has played a significant modelling role, and there is a clear possibility of an inversion of the relief (Bolonia or Sicily) or of the effect of diapiric processes (Secchia, Vallada, Antequera). The typological diversity of the dolines is obviously also related to these premisses. Another example is the relation existing between carbonate precipitation and gypsum solution, as evidenced in contrasting examples (Bolonia versus Sorbas).
Subterranean karstic forms have been examined from a double perspective: the morphology of the passages and the mineralization within the cavities. With respect to the former, a noteworthy example is the interstratification karst of Sorbas, where subterranean channels have developed during two well-differentiated phases, the phreatic and the vadose. The first was responsible for the formation of the small proto-galleries, currently relicts that are observable as false dome channels in the bottom of the gypsiferous strata. The second, with an erosive character, enabled the breakup of the marly interstrata and the formation of the large galleries found today. Other aspects considered include the speleogenetic influence of the presence of calcareous intercalations in the gypsiferous sequence (Vallada karst), gypsiferous agglomerates (Baena karst), anhydrite (Rotgers karst), suffusion processes (Sorbas karst) and the importance of condensation.
Spelothemes in gypsiferous cavities have been approached with special concern for gypsiferous speleothemes, in particular those which, due to their genetic peculiarity or to the lack of previous knowledge about them, are most significant. Among these are gypsum balls, with phenomena of solution, detritic filling, capillarity and evaporation; gypsum hole stalagmites, where the precipitation-solution of the gypsum controlling the formation of the central orifice is related to the previous deposit of carbonate speleothemes; gypsum trays that mark the levels of maximum evaporation; gypsum dust, determined by abrupt changes in temperature and humidity in areas near the exterior of gypsiferous cavities. All of these are characteristic of, and practically exclusive to, gypsiferous karsts in semiarid ztenes such as Sorbas and New Mexico.
Karst in gypsum has been morphologically classified with reference to the previously-mentioned criteria: the presence and typology of epigean karstic forms, both macro and microform; the typology of hypogean karstic forms (passages) and the type of speleothemes within the cavities (gypsiferous or carbonate). All these variables are clearly influenced by climatology, and so a study of the geomorphology of gypsiferous karst is seen to be an efficient tool for the analysis of the paleoclimatology of an area.
Hydrogeochemical characterization of gypsum karst
The hydrogeochemical characterization of karst in gypsum was approached in two stages. The first one was intended to establish themodels to be applied to the hydrochemistry approach, while the second provided various examples of hydrochemical studies carried out in gypsiferous karsts.
The theoretical framework which has been shown to be most accurate with respect to the formulation of chemical equilibria in water related to gypsiferous karst is the Virial Theory and the Pitzer equations.
For this study, we used a simplification of these equations as far as the second virial coefficient by means of a simple, polynomial variation to obtain the equilibrium state of the water with respect to the gypsum, for an ionic strength value greater than 0.1 m and temperatures of between 0.5 and 40 "C. This was the case of the gypsiferous karsts found to be related to hypersaline water at depth (Vallada, Gobantes-Meliones, Poiano). In the remaining situations, where the ionic strength was below 0.1 m, only the theory of ionic matching was used.
The hydrochemical study of the gypsiferous karst of Gobantes-Meliones (Malaga) led to the hypothesis of the possible influence of hypersaline water on karstification in gypsum. Using theoretical examples of the mixing of water derived both from hypersaline water and from water related only to the gypsiferous karst, it was shown that above a percentage content of 0.1:0.9 of saline and sulphated water, the mixture is subsaturated with respect to gypsum and other minerals. On reaching percentages greater than 0.5:0.5, values of oversaturation are again found. This could mean that the contact between sulphated and hypersaline water is a karstification zone in gypsum at depth.
In the gypsiferous karst at Salinas-Fuente Camacho (Granada), a study has been made of the hydrochemical influence of dolomitic levels in the sequence by means of the analysis of the hydrochemical routes between hydraulically-connected points. The generic case of mass transfer in this gypsiferous aquifer implies a precipitation of calcite which is in-congruent with dolomitic solution, proving that the process of dedolomitization in gypsiferous aquifers with an abundance of dolomitic rocks can be an effective process. In situations of high salinity, with contributions of hypersaline water, the process may be inverted, such as occurs in coastal carbonate aquifers influenced by the fresh-saltwater interface.
The gypsiferous aquifer of Sorbas-Tabernas (Almeria) provides the best case of karstification in gypsum in Spain; the hydrochemical study carried out has been used as an example of karstification in gypsum completely uninfluenced by sodium-chloride facies. It is shown, from the hydrochemical similarities between the different sectors, that the uniformity of the flow from the system main spring (Los Molinos) responds to the delayed hydraulic input through the overlying post-evaporitic materials and to the pelitic intercalations of the gypsiferous sequence. The aquifer is partially semiconfined, a situation which is comparable to the onset of the karstification stage, while the area of the Sorbas karst, strictly speaking, bears no hydriaulic relation to the rest of the system, behaving like a free aquifer intrinsically related to the epikarstic zone. This fact is demonstrated by the hydrochemical differences between the main spring and those related to gypsiferous cavities.
Apart from the general study of the Sorbas-Tabemas aquifer, a study was also made of the hydrochemical-time variations within cavities, and in particular within the Cueva del Agua, where it is possible to observe particular processes affecting karstification in gypsum, such as the precipitation of carbonates on the floor of the cavity which produce, in that area, a greater solution of gypsum (the phenomenon of hyperkarstification). Furthermore, the temporal evolution of the chemistry of the cavity, along 800 m of subterranean flow through its interior, shows the existence of inertial sectors where the variations were less abrupt. Only in the case of particular sectors, related to sporadic hydriaulic contributions or to the proximity to points of access., was a notable seasonal influence detected.
A similar hydrochemical study was carried out in the karst of Vallada (Valencia), along the cavity of the Tunel dels Sumidors. The chemistry here was compared with that of the springs of Brolladors (whose water rapidly infiltrates into the cavity) and Saraella (a saline resurgence of the whole system). Unexpected increases in the ionic content of certain salts (sulphates and chlorides) were detected during periods of increased flow; these were interpreted as the effect of the recharging of the Saraella spring arising from the immediate contribution of rapidly circulating sulfated water coming from the cavity and the subsequent mobilization of interstitial water with an ionic content higher than the characteristic level of the spring.
We present as a hypothesis the idea that, in addition to the hydrogeochemical processes described that can affect the evolution of a gypsiferous karst, the processes of sulphate reduction also influence karstification in gypsum, at least during the earliest stages. Some examples such as the presence of gypsum with abundant organic matter reprecipitated into phreatic channels (Sorbas) or veins of sulphur related to gypsiferous karsts (Podolia, Sicily) lend support to this idea.
Studies of the solution-erosion of gypsum have been performed by physical methods (tablets and M.E.M.) showing that the solution-erosion of gypsum within cavities is minimal (0.03 mm/ year) compared to that existing in the exterior (0.3 mm/year). The speleogenetic effect of condensation within the cavities has also been shown, with solution-erosion rates of 0.005 mm/year to be like the equivalent surface lowering. These data correspond to the karst in gypsum at Sorbas, where, additionally, a study about the time variation of the solution-erosion was carried out. It was found that the process is not continuous but clearly sporadic. During periods of torrential rain, the solution-erosion ranges from a weight loss of 400 mg/cm2/year on the surface of the karst to 75 mg/cm2/year inside the caves, while during the rest of the year the weight loss was barely 1 mg/cm2/year. The physical methods were compared with the results obtained from chemical methods, and it was found that, in general, higher values were obtained with the former (10-20% higher when weighted for the rainfall during the measuring periods). Thus it is reasonable to consider that the erosive process is more marked than was at first assumed.
In total, three cavity tracing experiments were carried out, all with fluoresceine, two of them in Cueva del Agua in Sorbas (during periods of high and low water levels) and the other in Tunel dels Sumidors in Vallada. At the first site, the comparison of the two tracing tests reveals a differential hydrodynamic behaviour of the cavity for the two contrasting situations; periods of high water input and periods of low rainfall. This behaviour is characteristic of well developed karstic aquifers, where the hydrodynamic effect of the circulation of water through small channels or, in this case, through the gypsiferous matrix and interbedded marly layers, seems to be more important under conditions of low hydraulic input than when rainfall is abundant. The two situations tested seem to confirm that the Cueva del Agua system, an epikarstic aquifer, which is representative of karstification in gypsum, has scarce retentive power and so large volumes of precipitation are totally discharged via the spring within a few days. However, the explanation of the small but continuous flow from the base of the cavity requires the inclusion of other factors in the interpretation. In this case, the flow seems to be fairly independent of rainfall and attributable to other processes, in addition to the previously described ones, such as the retentive power of the gypsiferous matrix and the marly interstrata. These might include the high degree of condensation measured over long periods, both on the surface of the karst in gypsum and within the cavities. In the case of the Tunel dels Sumidors, a highly irregular response was found, despite the fact that the coefficient of dispersivity was found to be 0.4. This value is similar to that obtained for the karst in gypsum at Sorbas in response to low water conditions, and so, here too, one might assume the influence of greater than expected flow-retaining processes, between the entry and exit points. Doubtless the karstic system of the Tunel dels Sumidors is more complex than was initially expected and in fact, the irregularity reflected by the fluoresceine concentration curve over time implies the existence of other factors to explain the diversity of the relative maxima obtained. Firstly, the presence of numerous Triassic clay intercalations might delay the flow, in addition to retaining a certain quantity of fluoresceine by ionic exchange. There is also a possibility that the flow is dispersed through a network of small conduits and pores, due to the permeability of the gypsiferous matrix. Finally, we cannot discount the possible existence of a deep-level input which, in this case, would be responsible for the variation in the flow and the chemical composition. This set of suppositions, as a whole, would explain the fact that the response of the spring to tracing is so irregular, even though we cannot achieve a definition of the qualitative influence of each one on the hydrodynamics of the system.
In order to verify some of the above hypotheses, particularly those referring to the process of condensation within cavities, an experiment was designed, consisting of a microtracing test at some points where condensation had been detected within the Cueva del Agua at Sorbas. The test produced a range of condensation flow speed values of 0.2 to 30 cm/hour and shows that, in those sections where the presence of condensation flow is visually apparent, there is a rapid dispersion of the colourant. However, it also shows that at points where there is no apparent condensation the process also occurs, but at a lower rate of efficiency. The importance of condensation within cavities has two aspects; firstly, speleogenetic, with the development of solution forms (cupolas) and deposit forms (capillarity boxwork); and secondly, hydrogeological, as this is the reason why certain processes (strong changes in temperature and humidity, multiple routes of airflow exchange with the exterior) may in themselves constitute a hydraulic contribution, of slight importance, but sufficient to explain a large part of the base flow (0.2 - 0.8 L/s) of a whole cavity system such as the Cueva del Agua in semiarid conditions.
With the intention of completing the analyses carried out in various karsts in gypsum, instruments were installed in the Cueva del Agua at Sorbas to measure, by continuous registration, some important physico-chemical parameters that might provide additional data on the hydro-geologic behaviour of this gypsiferous karst, especially at the level of the epikarstic zone. The parameters of temperature and water conductivity were considered most important, due to their singular behaviour patterns. During the experiment there were two periods of rainfall that modified the chemistry of the cavity, one of 30 mm in two days and another of 200 mm (almost the annual total) in four days. In the second case, which was much more extreme, a very significant increase in water temperature (up to 7 °C during the initial period of high water flow) was detected, while conductivity fell. But suddenly, when the minimum conductivity was reached, the temperature dropped sharply by 6-7 °C to return to the base temperature of the cavity. Subsequently, the temperature again stabilized at about 7 °C above the data recorded during the dry period. This behaviour pattern was not detected when the rainfall was slight. The explanation for this dual behaviour observed is fundamentally based on the quantity of rainfall and on the differences between the exterior air temperature, the temperature of interstitial water and the temperature recorded in the spring during high water flow. When water temperature in the cavity during high water flow is higher than the base temperature recorded in the period immediately before, it means that the interstitial water does not mobilize. However, when at any time the two temperatures coincide, one might suppose that there might have existed a process of mobilization of the water previously resident in the rock, by a piston effect, but in the unsaturated zone. On the other hand, the temporal variations of these parameters during the months following periods of high rainfall have enabled us to detect the existence of distinct periods during the return to normal cavity conditions. By carefully examining the decrease curve of water temperature inside the cavity while conductivity regained its maximum stable value, two periods may be differentiated. The first may be termed the "inertial influence period", when the rainfall occurring removes all signs of natural variation in the cavity. Thus, the daily external influences are not clearly detectable and the curve is downward-sloping and asymptotic with no significant oscillations. In the second period, which ends with the total stabilization of the parameter at the level of the initial conditions, the asymptotic descent is seen to be affected by daily temperature variations. This is termed the "inertial recovery period", during which external variations start to have an effect on the interior of the cavity such that there is a progressive increase in the amplitude of the daily variation in water temperature, air temperature and relative humidity. This behaviour pattern of variation of these parameters during periods of high rainfall, might be extended to all karstic systems, varying only in magnitude and temporal extent.


Remplissages karstiques tectoniss de la rgion de Marseille, 1999,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Monteau, Raymond
The paleokarst fillings in the Riou and Frioul archipelagoes, the coastal ranges of MarseiIleveyre (Calanques) Notre Dame de la Garde (the Bay of Marseille) show several examples of various tectonic mechanisms due to compressive stresses. A chronology of the various phases is described: compartment process, overlapping, tilting. These deformations and the several after-episodes observed can be dated between the Lower Eocene and the Upper Pleistocene, but it is still difficult to give a more precise date. The tertiary fillings show the action of local decompression and tilting in some cases. In the detailed study of the karstic lithified deposits two kinds of tectonised sequences are shown in connection with the local tectonics.

Un cas dcole, laffaissement du barrage de Zeuziers (Valais, Suisse) : problmes gotechniques et karstification, 1999,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Nicod, Jean
The deformations of the Zeuzier arch-dam (Valis, switzerland). Extraordinary geotechnical and hydrogeological problems and questioning over a possible part of karstification

Growth and demise of an Archean carbonate platform, Steep Rock Lake, Ontario, Canada, 1999,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Kusky T. P. , Hudleston P. J. ,
The Steep Rock Group of northwest Ontario's Wabigoon subprovince is one of the world's thickest Archean carbonate platform successions. It was deposited unconformably over a 3001-2928 Ma gneissic terrane, and contains a remarkable group of biogenic and oolitic limestones, dolostones, micrites, and karat breccias capped by a thick paleosol developed between and over karst towers. The presence of aragonite fans, herringbone calcite, and rare gypsum molds suggests that the carbonate platform experienced at least local anaerobic and hypersaline depositional conditions. This sequence shows that a combination of chemical and biological processes was able to build a carbonate platform 500 m thick by 3 billion years ago. The carbonate platform is structurally overlain by a mixture of complexly deformed rocks of the Dismal Ashrock forming a melange with blocks of ultramafic volcaniclastic rocks, mafic volcanics, carbonate, tonalite, lenses of Fe-ore rock, and metasedimentary rocks, in a shaly, serpentinitic, and fragmental ultramafic volcaniclastic matrix. The melange shows evidence of polyphase deformation, with early high-strain fabrics formed at amphibolite facies, and later superimposed brittle fabrics related to the final emplacement of the melange over the carbonate platform. An amphibolite- through greenschist-grade shear zone marks the upper contact of the melange with overlying mafic volcanic and tuffaceous rocks of the ca. 2932 Ma Witch Bay allochthon, interpreted as a primitive island are sequence. We suggest an evolutionary model for the area that begins with rifting of an are sequence (Marmion Complex of the Wabigoon are) that initiated subsidence and sedimentation on the Steep Rock platform and its correlatives that extend for a restored strike length exceeding 1000 km. Shallow water carbonate sedimentation continued until the platform was uplifted on the flanks of a flexural bulge related to the approach of the Witch Bay allochthon, representing collision of the rifted are margin of the Wabigoon subprovince with the Witch Bay are. Melange of the Dismal Ashrock was formed as off-axis volcanic rocks were accreted to the base of the Witch Bay allochthon prior to its collision with the Steep Rock platform

A record of multistage continental break-up on the Brianconnais marginal plateau (Western Alps): Early and Middle-Late Jurassic rifting, 1999,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Claudel Me, Dumont T,
The Brianconnais series in the French Western Alps near Briancon bear evidence of extensional deformation preceding Alpine shortening. Most of these structures have been ascribed to Tethyan rifting processes. However, many of them are younger than the initial opening of the Ligurian Tethys ocean (Late Bajocian-Early Bathonian) and have a different orientation than the syn-rift faults. The combined use of sedimentological, stratigraphic, paleostructural and structural methods allows to distinguish the features related to the Tethyan rifting (Early to early Middle Jurassic) from the younger extensional deformation (Late Jurassic) which in part overprinted them: The Tethyan rifting is marked by a subaerial erosional surface (breakup unconformity), bearing karsts which developed along syn-rift faults. The continental to shallow marine diagenetic inprints are analysed (diagenetic log method). The Tethyan syn-rift uplift occurred as pulses from the early Late Triassic (Champcella type units) to the late Early Liassic (Peyre-Haute unit), whereas Tethyan post-rift drowning was synchronous (Late Bathonian thermal subsidence). We propose that the post-break-up extensional deformation (Late Jurassic) is linked with intracontinental rifting of the Atlantic realm (Bay of Biscay and/or Valais rifts). Therefore, the pre-Alpine deformations recorded in the Brianconnais series may result from the interference between different Mesozoic rifting-spreading cycles. Alpine inversion processes are more complex than previously thought since (1) the pre-Alpine structural grain was made of at least two, nearly perpendicular trends, (2) convergence changed in orientation through time, making it possible to reactivate preferentially either one or the other trend, and (3) significant nappe rotations are expected, which may be considered for palinspastic restoration. This has important paleogeographic implications, i.e. the present-day upper units of the Brianconnais pile are not necessarily derived from more distal parts of the Tethyan margin than the lower ones since they may have suffered important lateral, possibly northward, transport before final outward stacking

The Vazante zinc mine, Minas Gerais, Brazil; constraints in willemitic mineralization and fluid evolution, 1999,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Lena Virginia Soares Monteiro, Jorge Silva Bettencourt, Baruch Spiro, Rodnei Graca, And Tolentino Flavio De Oliveira
The Vazante Mine is located in the Vazante District, the largest zinc district in Brazil. The Vazante deposit consists dominantly of an unusual willemitic ore. Small sulfide bodies are tectonically imbricated with the willemitic ore, within the Vazante shear zone. Structural styles of deformation and petrographic and isotopic evidence indicate that willemitic mineralization and deformation occurred synchronously during the Neo-Proterozoic. Various generations of hydrothermal veins and hydraulic breccias may pre-date, accompany and overprint the mineralization. Ore-formation temperatures are deduced from stable isotope geothermometry and mineral chemistry of both sulfide bodies and willemitic ore. Temperatures during the main stage of mineralization range from 206 degrees C to 294 degrees C (willemitic ore) and 317 degrees C (sulfides), and reflect the prevailing metamorphic conditions within the shear zone. The fluid from which the gangue minerals of the sulfide bodies precipitated (at 250 degrees C) had an oxygen isotopic average value of delta 18 O = +19.4 per mil. This value appears to reflect the interaction of metamorphic fluid with the carbonate rocks of the Vazante formation. At 250 degrees C, the fluid in equilibrium with the vein mineral phases and willemitic ore assemblage exhibits a uniform oxygen isotopic composition, with an average value of delta 18 O = +11.5 per mil. The positive linear covariance of delta 18 O and delta 13 C ratios of the carbonates is most likely due to the mixing of metamorphic and meteoric fluids. The delta 34 S values of sulfides indicate a direct crustal origin for the sulfur. It is suggested that the sulfur is largely derived from pre-existing sulfide bodies and has been transported by metamorphic fluids. The willemitic ore may have originated from the precipitation of metal in sulfur-poor fluids under oxidized conditions, within the Vazante shear zone.

Co-seismic ruptures and deformations recorded by speleothems in the epicentral zone of the Basel earthquake, 1999,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Lemeille Francis, Cushing Marc, Carbon David, Grellet Bertrand, Bitterli Thomas, Flehoc Christine, Innocent Christophe,
The study of growth anomalies of speleothems in a karstic environment can provide potential evidence for palaeoearthquakes. These data are used to study the recurrence times of major earthquakes in areas where evidence for historic seismicity is lacking. A study has been carried out in the epicentral area of the 1356 Basel earthquake (epicentral intensity = VII-VIII, macroseismic magnitude = 6.2). The Battlerloch and Dieboldslochli caves, situated in the area of greatest damage, show growth anomalies of speleothems possibly related to a seismic event (several breaks of speleothems and offsets of the axis of the regrowths). The first U/Th disequilibrum measurements by alpha spectrometry show recent ages (less than several tens of thousands of years and probably historic). 14C dating by AMS of carbonate laminations taken on both sides of the anomalies confirm the evidence of a seismic event around 1300 AD. More accurate darings by U/Th TIMS are carried out in order to compare the information provided by the two different dating methods.ResumeL'etude des anomalies de developpement des speleothemes en milieu endokarstique peut permettre de retrouver la trace de paleoseismes. Ces donnees sont utilisees pour etudier les periodes de retour des seismes majeurs dans les regions ou la sismicite historique n'est pas suffisante. Une etude a ete menee dans la zone epicentrale du seisme de Bale de 1356 (intensite epicentrale = VII-VIII, magnitude macrosismique = 6,2). Dans l'aire de degats majeurs, les grottes du Battierloch et du Dieboldslochli ont montre l'existence d'anomalies de croissance des speleothemes pour lesquelles une origine sismique est possible (nombreuses ruptures de speleothemes et decalage de l'axe de croissance des repousses). Les premieres mesures de desequilibres U/Th par spectrometrie alpha indiquent des ages recents (inferieurs a quelques dizaines de milliers d'annees et probablement historiques). Les datations 14C par AMS de carbonates des lamines preleves de part et d'autre de ces anomalies confirment l'empreinte d'un evenement destructif brutal vers 1300 AD. Des datations plus precises par U/Th TIMS sont en cours de realisation afin de confronter les informations apportees par ces deux chronometres

Phnomnes de karstification observs dans une cavit artificielle du Rincn Blanco (Argentine), 2000,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Barredo, Silviap.
The Rincon Blanco subbasin is located in San Juan Province, Argentina, between 69 15' west by 314' to 31 33' south and is characterised by a non marine continental infilling. During the Tertiary times it underwent compressional deformation folding it into a tight north-_south trending syncline. The whole sedimentary sequence is comprised of coarse-grained units interfingered with sandstones and shales. In particular, these latter were deposited in an alkaline lake and are composed of carbonate and organic rich strata. These characteristic lacustrine facies bear bituminous shales widely known as "Rincon Blanco oil slates". During the 1950' s and 1970' s, they were densely explored resulting in a number of galleries that presently are abandoned. They were cut in the bituminous rocks exposing west-east and southeast-northwest systems of minor faults and local fractures. These discontinuities permitted the inflow of meteoric waters through the overlying layers and into these artificial caves, thus resulting in carbonate cement dissolution, and, re-precipitation as tiny stalactites, stalagmites, thick travertine deposits in the floor with incipient microchannels accompanied by pools (gurs) with pearls and botroidal-like concretions. Several solutional speleothems are also found and correspond to ceiling and wall pockets and floor pits. This phenomena seemed to be related to acidic water coming from small discharges and flowing through the network of integrated tectonic openings to the innermost tunnel sections where humid air reaches saturation. Water trickling resulting from condensation produces erosional features and, together with dropping and occasional flows, the speleothems. Events of slight flow turbulence in some enlarged fractures are also inferred by the presence of ceiling and floor dissolutional features.

Une autre approche des problmes daffaissement du barrage de Zeuziers (Suisse), 2000,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Wildberger, Andres
New data about the deformations of the Zeuzier arch-dam (Switzerland)

Speleogenesis of the Mammont cave system, Kentucky, USA, 2000,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Palmer A. N.
The Mammoth Cave System, in southwestern Kentucky, USA, is located in carbonate rocks of Mississippian (early Carboniferous) age, which dip less that one degree toward the northwest into the Illinois structural basin. The cave is contained within the Chester Upland, a fluvially dissected plateau of limestones and dolomites capped by clastic rocks. However, much of the groundwater recharge to the cave today and in the past has been from the nearby karst surface of the Pennyroyal Plateau, up-dip from the Chester Upland, where the insoluble cap-rock has been removed by erosion, exposing the carbonate rocks over a broad surface. The local bedrock is very prominently bedded, with very few large fractures, and as a result the cave passages are sinuous canyons and tubes, interspersed with vertical shafts that have developed downward in sequence, bed by bed. Passages of vadose origin are oriented almost invariably down the local dip, which is complicated by many irregularities superimposed on the regional dip. Phreatic passages show no inherent relation to the dip and are mostly oriented at very shallow angles to the strike direction. Depth of cave development below the water table is limited to a few tens of meters by the small amount of structural deformation. Dating of sediment shows that most of the earliest passages probably formed during the late Pliocene Epoch, although the very highest passages may be considerably older. These passages are few but large, and consist mainly of wide canyons and tubes that were later almost filled with silt, sand, and gravel during periods of regional aggradation. Diversion of drainage into the Ohio River by glacial ice during the early Pleistocene caused rapid entrenchment of the Ohio and its tributaries in the Mammoth Cave region. Passages became much more numerous as the landscape was dissected and as erosional base levels fluctuated more rapidly. Several major passage levels developed during periods of relatively static base level. The Mammoth Cave System thus provides many clues to the geomorphic history of the surrounding region.

Modelling the stability of a very large cave chamber; case study: Brezno pri Medvedovi konti, 2000,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Kortnik Jož, E, Š, Uš, Terš, Ič, France

The big chamber in Brezno pri Medvedovi konti (Julian Alps, Slovenia), about 150 m wide, over 50 m high and with a volume of about 62 ¥ 104 m3, is the second largest cave chamber yet discovered in Slovenia. Application of FLAC computer software enabled modelling of the stability of the chamber's arched roof during hypothetical denudational lowering of the overlying surface. Modelling was based on two sets of rock property parameters generally attributed to the local parent rock. In both cases the modelled deformation within the arch was at a minimum at a residual ceiling thickness of 20 to 30 m, whereas collapse occurred when the residual ceiling thickness reduced to about 4 m. These modelling results fit well with field observations of partly collapsed cave chambers.


Geochemical study of calcite veins in the Silurian and Devonian of the Barrandian Basin (Czech Republic): evidence for widespread post-Variscan fluid flow in the central part of the Bohemian Massif, 2000,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Suchy V. , Heijlen W. , Sykorova I. , Muchez Ph. , Dobes P. , Hladikova J. , Jackova I. , Safanda J. , Zeman A.

Carbonate fracture cements in limestones have been investigated by fluid inclusion and stable isotope analysis to provide insight into fluid evolution and deformation conditions of the Barrandian Basin (Silurian–Devonian) of the Czech Republic. The fractures strike generally north–south and appear to postdate major Variscan deformation. The most common fracture cement is calcite that is locally accompanied by quartz, natural bitumen, dolomite, Mn-oxides and fluorite. Three successive generations of fracture-filling calcite cements are distinguished based on their petrographical and geochemical characteristics. The oldest calcite cements (Stage 1) are moderate to dull brown cathodoluminescent, Fe-rich and exhibit intense cleavage, subgrain development and other features characteristic of tectonic deformation. Less tectonically deformed, variable luminescent Fe-poor calcite corresponds to a paragenetically younger Stage 2 cement. First melting temperatures, Te, of two-phase aqueous inclusions in Stages 1 and 2 calcites are often around 2208C, suggesting that precipitation of the cements occurred from H2O–NaCl fluids. The melting temperature, Tm, has values between 0 and 25.88C, corresponding to a low salinity between 0 and 8.9 eq. wt% NaCl. Homogenization temperatures, Th, from calcite cements are interpreted to indicate precipitation at about 708C or less. No distinction could be made between the calcite of Stages 1 and 2 based on their fluid inclusion characteristics. In some Stage 2 cements, inclusions of highly saline (up to 23 eq. wt% NaCl) brines appear to coexist with low-salinity inclusions. The low salinity fluid possibly contains Na-, K-, Mg- and Ca-chlorides. The high salinity fluid has a H2O–NaCl–CaCl2 composition. Blue-to-yellow-green fluorescing hydrocarbon inclusions composed of medium to higher API gravity oils are also identified in some Stages 1 and 2 calcite cements. Stage 1 and 2 calcites have d 18O values between 213.2‰ and 27.2‰ PDB. The lower range of the calculated d 18O values of the ambient fluids (23.5‰ to 1 2.7‰ SMOW) indicate precipitation of these cements from deeply circulating meteoric waters. The presence of petroleum hydrocarbon inclusions in some samples is interpreted to reflect partial mixing with deeper basinal fluids. The paragenetically youngest Stage 3 calcite cement has only been encountered in a fewveins.These calcites are characterised by an intensely zoned luminescence pattern, with bright yellow and non-luminescent zones. Inclusions of Mn-oxides and siliceous sinters are commonly associated with Stage 3 calcite, which is interpreted to have precipitated from shallower meteoric waters. Regional structural analysis revealed that the calcite veins of the Barrandian basin belong to a large-scale system of north–south-trending lineaments that run through the territory of the Czech Republic. The veins probably reflect episodes of fluid migration that occurred along these lineaments during late stages of the Variscan orogeny


Results 16 to 30 of 96
You probably didn't submit anything to search for