MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That floor pocket is see pocket.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 7
What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for input (Keyword) returned 185 results for the whole karstbase:
Showing 181 to 185 of 185
Hydrological role of karst in the Chalk aquifer of Upper Normandy, France, 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Janyani S. El, Dupont J. P. , Massei N. , Slimani S. , Dörfliger N.

The role of karst on large-scale groundwater flow is defined for the Chalk aquifer of Upper Normandy (western Paris Basin), France. In the regional context, chalk plateaus occupy the greater part of watersheds and are the main sites of groundwater recharge. Previous studies focused on karstic output systems in the valleys and less on water-level variations in the recharge zones upstream. This study assesses the relevant hydrogeological processes using time-series data (boreholes and springs) recorded along a down-gradient hydrologeological cross-section in two selected watersheds. These hydrological data are interpreted in the framework of previous descriptions of the morphological organization of the study area’s karst network. The results highlight the hydrological role of (1) the input karst (vertical conduits) which drains recharging water, (2) the output karst (sub-horizontal conduits widely developed in the vicinity of valleys in the surface watersheds) which drains the output flows, and (3) the connections between these two (input and output) networks, which control the upstream water levels and allow quick transfer to springs, particularly after strong rainfall events. A conceptual model of the hydrological functioning of this covered karst aquifer is established, which should serve for the structuring and parameterization of a numerical model

Characterisation and modelling of conduit restricted karst aquifers – Example of the Auja spring, Jordan Valley, 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Schmidta Sebastian, Geyera Tobias, Guttmanb Joseph, Mareic Amer, Riesd Fabian, Sauter Martin

The conduit system of mature karstified carbonate aquifers is typically characterised by a high hydraulic conductivity and does not impose a major flow constriction on catchment discharge. As a result, discharge at karst springs is usually flashy and displays pronounced peaks following recharge events. In contrast, some karst springs reported in literature display a discharge maximum, attributed to reaching the finite discharge capacity of the conduit system (flow threshold). This phenomenon also often leads to a non-standard recession behaviour, a so called “convex recession”, i.e. an increase in the recession coefficient during flow recession, which in turn might be used as an indicator for conduit restricted aquifers. The main objective of the study is the characterisation and modelling of those hydrogeologically challenging aquifers. The applied approach consists of a combination of hydrometric monitoring, a spring hydrograph recession and event analysis, as well as the setup and calibration of a non-linear reservoir model. It is demonstrated for the Auja spring, the largest freshwater spring in the Lower Jordan Valley. The semi-arid environment with its short but intensive precipitation events and an extended dry season leads to sharp input signals and undisturbed recession periods. The spring displays complex recession behaviour, exhibiting exponential (coefficient α) and linear (coefficient β) recession periods. Numerous different recession coefficients α were observed: ∼0.2 to 0.8 d−1 (presumably main conduit system), 0.004 d−1 (fractured matrix), 0.0009 d−1 (plateau caused by flow threshold being exceeded), plus many intermediate values. The reasons for this observed behaviour are the outflow threshold at 0.47 m3 s−1 and a variable conduit–matrix cross-flow in the aquifer. Despite system complexity, and hence the necessity of incorporating features such as a flow threshold, conduit–matrix cross-flow, and a spatially variable soil/epikarst field capacity, the developed reservoir model is regarded as relatively simplistic. As a number of required parameters were calculated from the hydrogeological analysis of the system, it requires only six calibration parameters and performs well for the highly variable flow conditions observed. Calculated groundwater recharge in this semi-arid environment displays high interannual variability. For example, during the 45-year simulation period, only five wet winter seasons account for 33% of the total cumulative groundwater recharge.

Caractérisation et modélisation hydrodynamique des karsts par réseaux de neurones. Application à l’hydrosystème du Lez , 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Virgile, Taver

Improving knowledge of karst hydrodynamics represents a global challenge for water resources because karst aquifers provide approximately 25% of the world population in fresh water. Nevertheless, complexity, anisotropy, heterogeneity, non-linearity and possible non-stationarity of these aquifers make them underexploited objects due to the difficulty to characterize their morphology and hydrodynamics. In this context, the systemic paradigm proposes others methods by studying these hydrosystems through input-output (rainfall-runoff) relations.

The approach proposed in this thesis is to use information from field measurement and from systemic analyses to constrain neural network models. The goal is to make these models interpretable in terms of hydrodynamic processes by making model functioning to be similar to natural system in order to obtain a good representation and extract knowledge from model parameters.

This work covers the association of information available on the hydrosystem with correlation and spectral analyses to develop a temporal multiresolution decomposition of variables and to constrain neural network models. A new method for variable selection, adapted to represent long term hydrodynamics of the system, has been proposed. These constrained models show very good results and allow, through their parameters, to study the temporal contribution of inputs variables to the output.

Modeling nonlinear and non-stationary hydrosystems with neural network has been improved by a novel implementation of data assimilation. More precisely, when non-stationarity is attributed to the catchment, data assimilation is used to modify the model parameters. When the inputs are non-stationary, data assimilation can be used to modify the inputs.

The modification of inputs opens considerable scope to: i) fill gaps or homogenizing time series, ii) estimate effective rainfall.

Finally, these various analyses and modeling methods, mainly developed on the karst hydrosystem Lez, can improve the knowledge of the rainfall-runoff relationship at different time scales. These methodological tools thus offer perspectives of better management of the aquifer in terms of floods and resources. The advantage of these analyses and modeling tools is that they can be applicable to other systems.

A new method to quantify carbonate rock weathering, 2015,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Dubois Caroline, Deceuster John, Kaufmann Olivier, Rowberry Matt D.

The structure and composition of carbonate rocks is modified greatly when they are subjected to phenomena that lead to their weathering. These processes result in the production of residual alterite whose petrophysical, mechanical, and hydrological properties differ completely to those of the unweathered rock. From a geotechnical perspective, it is important that such changes are fully understood as they affect reservoir behavior and rock mass stability. This paper presents a quantitative method of calculating a weathering index for carbonate rock samples based on a range of petrophysical models. In total, four models are proposed, each of which incorporates one or more of the processes involved in carbonate rock weathering (calcite dissolution, gravitational compaction, and the incorporation of inputs). The selected weathering processes are defined for each model along with theoretical laws that describe the development of the rock properties. Based on these laws, common properties such as rock density, porosity, and calcite carbonate content are estimated from the specific carbonate rock weathering index of the model. The propagation of measurement uncertainties through the calculations has been computed for each model in order to estimate their effects on the calculated weathering index. A new methodology is then proposed to determine the weathering index for carbonate rock samples taken from across a weathered feature and to constrain the most probable weathering scenario. This protocol is applied to a field dataset to illustrate how these petrophysical models can be used to quantify the weathering and to better understand the underlying weathering processes.

Calculating flux to predict future cave radon concentrations, 2016,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Rowberry Matt, Marti Xavi, Frontera Carlos, Van De Wiel Marco, Briestensky Milos

Cave radon concentration measurements reflect the outcome of a perpetual competition which pitches flux against ventilation and radioactive decay. The mass balance equations used to model changes in radon concentration through time routinely treat flux as a constant. This mathematical simplification is acceptable as a first order approximation despite the fact that it sidesteps an intrinsic geological problem: the majority of radon entering a cavity is exhaled as a result of advection along crustal discontinuities whose motions are inhomogeneous in both time and space. In this paper the dynamic nature of flux is investigated and the results are used to predict cave radon concentration for successive iterations. The first part of our numerical modelling procedure focuses on calculating cave air flow velocity while the second part isolates flux in a mass balance equation to simulate real time dependence among the variables. It is then possible to use this information to deliver an expression for computing cave radon concentration for successive iterations. The dynamic variables in the numerical model are represented by the outer temperature, the inner temperature, and the radon concentration while the static variables are represented by the radioactive decay constant and a range of parameters related to geometry of the cavity. Input data were recorded at Driny Cave in the Little Carpathians Mountains of western Slovakia. Here the cave passages have developed along splays of the NE-SW striking Smolenice Fault and a series of transverse faults striking NW-SE. Independent experimental observations of fault slip are provided by three permanently installed mechanical extensometers. Our numerical modelling has revealed four important flux anomalies between January 2010 and August 2011. Each of these flux anomalies was preceded by conspicuous fault slip anomalies. The mathematical procedure outlined in this paper will help to improve our understanding of radon migration along crustal discontinuities and its subsequent exhalation into the atmosphere. Furthermore, as it is possible to supply the model with continuous data, future research will focus on establishing a series of underground monitoring sites with the aim of generating the first real time global radon flux maps.

Results 181 to 185 of 185
You probably didn't submit anything to search for