MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That humidity, relative is the ratio, expressed as a percentage, of the amount of water vapor actually present in air of a given temperature, as compared with the greatest possible amount of water vapor that could be present in air at that temperature. calculation of relative humidity can be done from tables, special slide rules or calculators, graphs, or complex equations [23]. see also hygrometer; psychrometer.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for ratio (Keyword) returned 1983 results for the whole karstbase:
Showing 1966 to 1980 of 1983
Genesis of folia in a non-thermal epigenic cave (Matanzas, Cuba), 2015, D'angeli Ilenia Maria, De Waele Jo, Ceballo Melendres Osmany, Tisato Nicola, Sauro Francesco, Grau Gonzalez Esteban Ruben, Bernasconi Stefano, Torriani Stefano, Bontognali Tomaso Renzo Rezio

Folia are an unusual speleothem type resembling inverted cups or bracket fungi. Themechanismof folia formation is not fully understood and is the subject of an ongoing debate. This study focuses on an occurrence of folia present in Santa Catalina Cave, a non-thermal epigenic cave located close to Matanzas (Cuba). The sedimentology, morphology, petrology, permeability and geochemistry of these folia have been studied to gain new insight on the processes leading to their development. It is concluded that folia in Santa Catalina Cave formed at the top of a fluctuating water body, through CO2-degassing or evaporation, which may have been enhanced by the proximity to cave entrances. Two observations strongly support our conclusions. (1) When compared to other subaqueous speleothems (e.g. cave clouds) present in the same rooms, folia occur exclusively within a limited vertical interval that likely represents an ancient water level. Folia occur together with calcite rafts and tower cones that developed, respectively, on top of and below the water level. This suggests that a fluctuating interface is required for folia formation. (2) The measured permeability of the folia is too high to trap gas bubbles. Thus, in contrast to what has been proposed in other studies, trapped bubbles of CO2 cannot be invoked as the key factor determining the genesis and morphology of folia in this subaqueous environment.


The role of condensation in the evolution of dissolutional forms in gypsum caves: Study case in the karst of Sorbas (SE Spain), 2015, Gazquez Fernando, Calaforra José Maria, Forti Paolo, De Waele Jo, Sanna Laura

The karst of Sorbas (SE Spain) is one of the most important gypsum areas worldwide. Its underground karst network comprises over 100 km of cave passages. Rounded smooth forms, condensation cupola and pendant-like features appear on the ceiling of the shallower passages as a result of gypsum dissolution by condensation water. Meanwhile, gypsum speleothems formed by capillarity, evaporation and aerosol deposition such as coralloids, gypsum crusts and rims are frequently observed closer to the passage floors. The role of condensation–dissolution mechanisms in the evolution of geomorphological features observed in the upper cave levels has been studied by means of long-term micro-erosion meter (MEM) measurements, direct collection and analysis of condensation waters, and micrometeorological monitoring. Monitoring of erosion at different heights on gypsum walls of the Cueva del Agua reveals that the gypsum surface retreated up to 0.033 mm yr−1 in MEM stations located in the higher parts of the cave walls. The surface retreat was negligible at the lowest sites, suggesting higher dissolution rates close to the cave ceiling, where warmer and moister air flows. Monitoring of microclimatic parameters and direct measurements of condensation water were performed in the Covadura Cave system in order to estimate seasonal patterns of condensation. Direct measurements of condensation water dripping from a metal plate placed in the central part of the El Bosque Gallery of Covadura Cave indicate that condensation takes place mainly between July and November in coincidence with rainless periods. The estimated gypsum surface lowering due to this condensation water is 0.0026 mm yr−1. Microclimatic monitoring in the same area shows differences in air temperature and humidity of the lower parts of the galleries (colder and drier) with respect to the cave ceiling (warmer and wetter). This thermal sedimentation controls the intensity of the condensation–evaporation mechanisms at different heights in the cave.


Long-term erosion rate measurements in gypsum caves of Sorbas (SE Spain) by the Micro-Erosion Meter method, 2015, Sanna Laura, De Waele Jo, Calaforra José Maria, Forti Paolo

The present work deals with the results of long-term micro-erosion measurements in the most important gypsum cave of Spain, the Cueva del Agua (Sorbas, Almeria, SE Spain). Nineteen MEM stations were positioned in 1992 in a wide range of morphological and environmental settings (gypsum floors and walls, carbonate speleothems, dry conduits and vadose passages) inside and outside the cave, on gypsum and carbonate bedrocks and exposed to variable degree of humidity, different air flowand hydrodynamic conditions. Four different sets of stations have been investigated: (1) the main cave entrance (Las Viñicas spring); (2) the main river passage; (3) the abandoned Laboratory tunnel; and (4) the external gypsum surface. Data over a period of about 18 years are available. The average lowering rates vary from 0.014 to 0.016 mm yr−1 near the main entrance and in the Laboratory tunnel, to 0.022 mm −1 on gypsum floors and 0.028 mm yr−1 on carbonate flowstones. 

The denudation data from the external gypsum stations are quite regular with a rate of 0.170 mm yr−1. The observations allowed the collecting of important information concerning the feeding of the karst aquifer not only by infiltrating rainwater, but under present climate conditions also by water condensation of moist air flow. This contribution to the overall karst processes in the Cueva del Agua basin represents over 20% of the total chemical dissolution of the karst area and more than 50% of the speleogenetically removed gypsum in the cave system, thus representing all but a secondary role in speleogenesis. Condensation–corrosion is most active along the medium walls, being slower at the roof and almost absent close to the floor. This creates typical corrosion morphologies such as cupola, while gypsum flowers develop where evaporation dominates. This approach also shows quantitatively the morphological implications of condensation–corrosion processes in gypsum karst systems in arid zones, responsible for an average surface lowering of 0.047 mm yr−1, while mechanical erosion produces a lowering of 0.123 mm yr−1.


23rd International Karstological School "Classical Karst". Caves - exploration and studies combined with the 50th anniversary of the International Union of Speleology - UIS, 2015, Zupan Hajna Nadja, Mihevc Andrej, Gostinčar Petra (eds. )

23rd International Karstological School "Classical Karst", Postojna, June 15th to 21st 2015

Caves - exploration and studies combined with the 50th anniversary of the International Union of Speleology - UIS : program & excursions & UIS & abstracts

 

 


Earliest evidence of pollution by heavy metals in archaeological sites, 2015, Guadalupe Monge, Francisco J. Jimenezespejo, Antonio Garcíaalix, Francisca Martínezruiz, Nadine Mattielli, Clive Finlayson, Naohiko Ohkouchi, Miguel Cortés Sánchez, Jose María Bermúdez De Castro, Ruth Blasco, Jordi Rosell, José Carrión, Joaquí

Homo species were exposed to a new biogeochemical environment when they began to occupy caves. Here we report the first evidence of palaeopollution through geochemical analyses of heavy metals in four renowned archaeological caves of the Iberian Peninsula spanning the last million years of human evolution. Heavy metal contents reached high values due to natural (guano deposition) and anthropogenic factors (e.g. combustion) in restricted cave environments. The earliest anthropogenic pollution evidence is related to Neanderthal hearths from Gorham's Cave (Gibraltar), being one of the first milestones in the so-called “Anthropocene”. According to its heavy metal concentration, these sediments meet the present-day standards of “contaminated soil”. Together with the former, the Gibraltar Vanguard Cave, shows Zn and Cu pollution ubiquitous across highly anthropic levels pointing to these elements as potential proxies for human activities. Pb concentrations in Magdalenian and Bronze age levels at El Pirulejo site can be similarly interpreted. Despite these high pollution levels, the contaminated soils might not have posed a major threat to Homo populations. Altogether, the data presented here indicate a long-term exposure of Homo to these elements, via fires, fumes and their ashes, which could have played certain role in environmental-pollution tolerance, a hitherto neglected influence.


Hydrothermal speleogenesis in carbonates and metasomatic silicites induced by subvolcanic intrusions: a case study from the Štiavnické vrchy Mountains, Slovakia, 2015,

Several caves of hydrothermal origin in crystalline limestones and metasomatic silicites were investigated in the central zone of the Štiavnica stratovolcano, Štiavnické vrchy Mountains, central Slovakia. Evidence of hydrothermal origin includes irregular spherical cave morphology sculptured by ascending thermal water, occurrence of large calcite crystals and hydrothermal alteration of host rocks, including hydrothermal clays. The early phases of speleogenesis in the crystalline limestone near Sklené Teplice Spa were caused by post-magmatic dissolution linked either to the emplacement of subvolcanic granodiorite intrusions during Late Badenian time or to the spatially associated Late Sarmatian epithermal system. Speleogenesis in metasomatic silicites in the Šobov area is related to hydrothermal processes associated with the pre-caldera stage of the Štiavnica stratovolcano in Late Badenian. Both localities are remarkable examples of hydrothermal speleogenesis associated with Miocene volcanic and magmatic activity in the Western Carpathians


Superposed folding and associated fracturing influence hypogene karst development in Neoproterozoic carbonates, São Francisco Craton, Brazil, 2015,

Porosity and permeability along fractured zones in carbonates could be significantly enhanced by ascending fluid flow, resulting in hypogene karst development. This work presents a detailed structural analysis of the longest cave system in South America to investigate the relationship between patterns of karst conduits and regional deformation. Our study area encompasses the Toca da Boa Vista (TBV) and Toca da Barriguda (TBR) caves, which are ca. 107 km and 34 km long, respectively. This cave system occurs in Neoproterozoic carbonates of the Salitre Formation in the northern part of the São Francisco Craton, Brazil. The fold belts that are around and at the craton edges were deformed in a compressive setting during the Brasiliano orogeny between 750 and 540 Ma. Based on the integrated analysis of the folds and brittle deformation in the caves and in outcrops of the surrounding region, we show the following: (1) The caves occur in a tectonic transpressive corridor along a regional thrust belt; (2) major cave passages, at the middle storey of the system, considering both length and frequency, developed laterally along mainly (a) NE–SW to E–W and (b) N to S oriented anticline hinges; (3) conduitswere formed by dissolutional enlargement of subvertical joints,which present a high concentration along anticline hinges due to folding of competent grainstone layers; (4) the first folding event F1was previously documented in the region and corresponds with NW–SE- to N–S-trending compression, whereas the second event F2, documented for the first time in the present study, is related to E–Wcompression; and (5) both folding  еvents occurred during the Brasiliano orogeny. We conclude that fluid flow and related dissolution pathways have a close relationship with regional deformation events, thus enhancing our ability to predict karst patterns in layered carbonates.


Hypogenic origin, geologic controls and functional organization of a giant cave system in Precambrian carbonates, Brazil, 2015,

This study is focused on speleogenesis of the Toca da Boa Vista (TBV) and Toca da Barriguda (TBR), the longest caves in South America occurring in the Neoproterozoic Salitre Formation in the São Francisco Craton, NE Brazil. We employ a multidisciplinary approach integrating detailed speleomorphogenetic, lithostratigraphic and geological structure studies in order to reveal the origin of the caves, their functional organization and geologic controls on their development. The caves developed in deep-seated confined conditions by rising flow. The overall fields of passages of TBV and TBR caves represent a speleogenetically exploited large NE–SW-trending fracture corridor associated with a major thrust. This corridor vertically extends across the Salitre Formation allowing the rise of deep fluids. In the overall ascending flow system, the formation of the cave pattern was controlled by a system of sub-parallel anticlines and troughs with NNE–SSWdominant orientation, and by vertical and lateral heterogeneities in fracture distribution. Three cave-stratigraphic stories reflect the actual hydrostratigraphy during the main phase of speleogenesis. Cavities at different stories are distinct inmorphology and functioning. The gross tree-dimensional pattern of the system is effectively organized to conduct rising flow in deep-seated confined conditions. Cavities in the lower story developed as recharge components to the system. A laterally extensive conduit network in the middle story formed because the vertical flow from numerous recharge points has been redirected laterally along the highly conductive unit, occurring below the major seal - a scarcely fractured unit. Rift-like and shaft-like conduits in the upper story developed along fracturecontrolled outflow paths, breaching the integrity of the major seal, and served as outlets for the cave system. The cave system represents a series of vertically organized, functionally largely independent clusters of cavities developed within individual ascending flow cells. Lateral integration of clusters occurred due to hydrodynamic interaction between the flow cells in course of speleogenetic evolution and change of boundary conditions. The main speleogenetic phase, during which the gross cave pattern has been established and the caves acquired most of their volume, was likely related to rise of deep fluids at about 520 Ma or associated with rifting and the Pangea break-up in Triassic–Cretaceous. This study highlights the importance of speleogenetic studies for interpreting porosity and permeability features in carbonate reservoirs.


Hypogene speleogenesis in dolomite host rock by CO2-rich fluids, Kozak Cave (southern Austria), 2015,

A growing number of studies suggest that cave formation by deep-seated groundwater  (hypogene) is a more common process of subsurface water-rock interaction than previously  thought. Fossil hypogene caves are identified by a characteristic suite of morphological  features on different spatial scales. In addition, mineral deposits (speleothems) may provide  clues about the chemical composition of the paleowater, which range from CO2-rich to  sulfuric acid-bearing waters. This is one of the first studies to examine hypogene cave  formation in dolomite. Kozak Cave is a fossil cave near the Periadriatic Lineament, an area  known for its abundance of CO2-rich springs. The cave displays a number of macro-, mesoand  micromorphological elements found also in other hypogene caves hosted in limestone,  marble or gypsum, including cupolas, cusps, Laughöhle-type chambers and notches. The  existance of cupolas and cusps suggests a thermal gradient capable of sustaining free  convection during a first phase of speleogenesis, while triangular cross sections (Laughöhle  morphology) indicate subsequent density-driven convection close to the paleowater table Notches mark the final emergence of the cave due to continued rock uplift and valley  incision. Very narrow shafts near the end of the cave may be part of the initial feeder system,  but an epigene (vadose) overprint cannot be ruled out. Vadose speleothems indicate that the  phreatic phase ended at least about half a million years ago. Drill cores show no evidence of  carbon or oxygen isotope alteration of the wall rock. This is in contrast to similar studies in  limestone caves, and highlights the need for further wall-rock studies of caves hosted in  limestone and dolomite


Hidden sinkholes and karst cavities in the travertine plateau of a highly-populated geothermal seismic territory (Tivoli, central Italy), 2015,

Sinkholes and other karst structures in settled carbonate lands can be a significant source of hazard for humans and human works. Acque Albule, the study area of this work, is a Plio-Pleistocene basin near Rome, central Italy, superficially filled by a large and thick deposit of late Pleistocene thermogene travertine. Human activities blanket large portions of the flat territory covering most evidence from geological surface processes and potentially inducing scientists and public officials to underestimate some natural hazards including those connected with sinkholes. To contribute to the proper assessment of these hazards, a geomorphologic study of the basin was performed using digital elevation models (DEMs), recent aerial photographs, and field surveys. Historical material such as old aerial photographs and past geomorphologic studies both pre-dating the most part of quarrying and village building was also used together with memories of the elderly population. This preliminary study pointed out the presence of numerous potentially active sinkholes that are at present largely masked by either quarrying or overbuilding. Where this first study pointed out the apparent absence of sinkholes in areas characterized by high density of buildings, a detailed subsurface study was performed using properly-calibrated electrical resistivity tomography (ERT) and dynamic penetration measurements (DPSH), together with some borehole logs made available from the local municipality. This second study highlighted the presence of sinkholes and caves that are, this time, substantially hidden to the resolution of standard methods and materials such as aerial photographs, DEMs, and field surveys. Active sinkhole subsidence in the Acque Albule Basin may explain, at least in part, the frequent damages that affect numerous buildings in the area. The main conclusion from this study is that the mitigation of sinkhole hazard in highly populated areas has to pass through a thorough search of (hidden) sinkholes that can be masked by the Anthropocenic molding and blanketing of the territory. For these purposes, data from historical (pre-Anthropocene) documents as well as, where possible, subsurface investigations are fundamental.


Research frontiers in speleogenesis. Dominant processes, hydrogeological conditions and resulting cave patterns, 2015,

Speleogenesis is the development of well-organized cave systems by fluids moving through fissures of a soluble rock. Epigenic caves induced by biogenic CO2 soil production are dominant, whereas hypogenic caves resulting from uprising deep flow not directly connected to adjacent recharge areas appear to be more frequent than previously considered. The conceptual models of epigenic cave development moved from early models, through the “four-states model” involving fracture influence to explain deep loops, to the digital models demonstrating the adjustment of the main flow to the water table. The relationships with base level are complex and cave levels must be determined from the elevation of the vadose-phreatic transitions. Since flooding in the epiphreatic zone may be important, the top of the loops in the epiphreatic zone can be found significantly high above the base level. The term Paragenesis is used to describe the upward development of conduits as their lower parts fill with sediments. This process often records a general baselevel rise. Sediment influx is responsible for the regulation of long profiles by paragenesis and contributes to the evolution of profiles from looping to water table caves. Dating methods allow identification of the timing of cave level evolution. The term Ghost-rock karstification is used to describe a 2-phase process of speleogenesis, with a first phase of partial solution of rock along fractures in low gradient conditions leaving a porous matrix, the ghost-rock, then a second phase of mechanical removing of the ghost-rock mainly by turbulent flow in high gradient conditions opening the passages and forming maze caves. The first weathering phase can be related either to epigenic infiltration or to hypogenic upflow, especially in marginal areas of sedimentary basins. The vertical pattern of epigenic caves is mainly controlled by timing, geological structure, types of flow and base-level changes. We define several cave types as (1) juvenile, where they are perched above underlying aquicludes; (2) looping, where recharge varies greatly with time, to produce epiphreatic loops; (3) water-table caves where flow is regulated by a semi-pervious cover; and (4) caves in the equilibrium stage where flow is transmitted without significant flooding. Successive base-level drops caused by valley entrenchment make cave levels, whereas baselevel rise is defined in the frame of the Per ascensum Model of Speleogenesis (PAMS), where deep passages are flooded and drain through vauclusian springs. The PAMS can be active after any type of baselevel rise (transgression, fluvial aggradation, tectonic subsidence) and explains most of the deep phreatic cave systems except for hypogenic.

The term Hypogenic speleogenesis is used to describe cave development by deep upflow independent of adjacent recharge areas. Due to its deep origin, water frequently has a high CO2-H2S concentration and a thermal anomaly, but not systemati­cally. Numerous dissolution processes can be involved in hypogenic speleogenesis, which often include deep-seated acidic sources of CO2 and H2S, “hydrothermal” cooling, mixing corrosion, Sulfuric Acid Speleogenesis (SAS), etc. SAS particularly involves the condensation-corrosion processes, resulting in the fast expansion of caves above the water table, i.e. in an atmo­spheric environment. The hydrogeological setting of hypogenic speleogenesis is based on the Regional Gravity Flow concept, which shows at the basin scales the sites of convergences and upflows where dissolution focuses. Each part of a basin (mar­ginal, internal, deep zone) has specific conditions. The coastal basin is a sub-type. In deformed strata, flow is more complex according to the geological structure. However, upflow and hypogenic speleogenesis concentrate in structural highs (buried anticlines) and zones of major disruption (faults, overthrusts). In disrupted basins, the geothermal gradient “pumps” the me­teoric water at depth, making loops of different depths and characteristics. Volcanism and magmatism also produce deep hypogenic loops with “hyperkarst” characteristics due to a combination of deep-seated CO2, H2S, thermalism, and microbial activity. In phreatic conditions, the resulting cave patterns

can include geodes, 2–3D caves, and giant ascending shafts. Along the water table, SAS with thermal air convection induces powerful condensation-corrosion and the development of upwardly dendritic caves, isolated chambers, water table sulfuricacid caves. In the vadose zone, “smoking” shafts evolve under the influence of geothermal gradients producing air convectionand condensation-corrosion.

Likely future directions for research will probably involve analytical and modeling methods, especially using isotopes, dating, chemical simulations, and field investigations focused on the relationships between processes and resulting morphologies.


Research frontiers in speleogenesis. Dominant processes, hydrogeological conditions and resulting cave patterns, 2015,

Speleogenesis is the development of well-organized cave systems by fluids moving through fissures of a soluble rock. Epigenic caves induced by biogenic CO2 soil production are dominant, whereas hypogenic caves resulting from uprising deep flow not directly connected to adjacent recharge areas appear to be more frequent than previously considered. The conceptual models of epigenic cave development moved from early models, through the “four-states model” involving fracture influence to explain deep loops, to the digital models demonstrating the adjustment of the main flow to the water table. The relationships with base level are complex and cave levels must be determined from the elevation of the vadose-phreatic transitions. Since flooding in the epiphreatic zone may be important, the top of the loops in the epiphreatic zone can be found significantly high above the base level. The term Paragenesis is used to describe the upward development of conduits as their lower parts fill with sediments. This process often records a general baselevel rise. Sediment influx is responsible for the regulation of long profiles by paragenesis and contributes to the evolution of profiles from looping to water table caves. Dating methods allow identification of the timing of cave level evolution. The term Ghost-rock karstification is used to describe a 2-phase process of speleogenesis, with a first phase of partial solution of rock along fractures in low gradient conditions leaving a porous matrix, the ghost-rock, then a second phase of mechanical removing of the ghost-rock mainly by turbulent flow in high gradient conditions opening the passages and forming maze caves. The first weathering phase can be related either to epigenic infiltration or to hypogenic upflow, especially in marginal areas of sedimentary basins. The vertical pattern of epigenic caves is mainly controlled by timing, geological structure, types of flow and base-level changes. We define several cave types as (1) juvenile, where they are perched above underlying aquicludes; (2) looping, where recharge varies greatly with time, to produce epiphreatic loops; (3) water-table caves where flow is regulated by a semi-pervious cover; and (4) caves in the equilibrium stage where flow is transmitted without significant flooding. Successive base-level drops caused by valley entrenchment make cave levels, whereas baselevel rise is defined in the frame of the Per ascensum Model of Speleogenesis (PAMS), where deep passages are flooded and drain through vauclusian springs. The PAMS can be active after any type of baselevel rise (transgression, fluvial aggradation, tectonic subsidence) and explains most of the deep phreatic cave systems except for hypogenic.

The term Hypogenic speleogenesis is used to describe cave development by deep upflow independent of adjacent recharge areas. Due to its deep origin, water frequently has a high CO2-H2S concentration and a thermal anomaly, but not systemati­cally. Numerous dissolution processes can be involved in hypogenic speleogenesis, which often include deep-seated acidic sources of CO2 and H2S, “hydrothermal” cooling, mixing corrosion, Sulfuric Acid Speleogenesis (SAS), etc. SAS particularly involves the condensation-corrosion processes, resulting in the fast expansion of caves above the water table, i.e. in an atmo­spheric environment. The hydrogeological setting of hypogenic speleogenesis is based on the Regional Gravity Flow concept, which shows at the basin scales the sites of convergences and upflows where dissolution focuses. Each part of a basin (mar­ginal, internal, deep zone) has specific conditions. The coastal basin is a sub-type. In deformed strata, flow is more complex according to the geological structure. However, upflow and hypogenic speleogenesis concentrate in structural highs (buried anticlines) and zones of major disruption (faults, overthrusts). In disrupted basins, the geothermal gradient “pumps” the me­teoric water at depth, making loops of different depths and characteristics. Volcanism and magmatism also produce deep hypogenic loops with “hyperkarst” characteristics due to a combination of deep-seated CO2, H2S, thermalism, and microbial activity. In phreatic conditions, the resulting cave patterns

can include geodes, 2–3D caves, and giant ascending shafts. Along the water table, SAS with thermal air convection induces powerful condensation-corrosion and the development of upwardly dendritic caves, isolated chambers, water table sulfuricacid caves. In the vadose zone, “smoking” shafts evolve under the influence of geothermal gradients producing air convectionand condensation-corrosion.

Likely future directions for research will probably involve analytical and modeling methods, especially using isotopes, dating, chemical simulations, and field investigations focused on the relationships between processes and resulting morphologies.


Research frontiers in speleogenesis. Dominant processes, hydrogeological conditions and resulting cave patterns, 2015,

Speleogenesis is the development of well-organized cave systems by fluids moving through fissures of a soluble rock. Epigenic caves induced by biogenic CO2 soil production are dominant, whereas hypogenic caves resulting from uprising deep flow not directly connected to adjacent recharge areas appear to be more frequent than previously considered. The conceptual models of epigenic cave development moved from early models, through the “four-states model” involving fracture influence to explain deep loops, to the digital models demonstrating the adjustment of the main flow to the water table. The relationships with base level are complex and cave levels must be determined from the elevation of the vadose-phreatic transitions. Since flooding in the epiphreatic zone may be important, the top of the loops in the epiphreatic zone can be found significantly high above the base level. The term Paragenesis is used to describe the upward development of conduits as their lower parts fill with sediments. This process often records a general baselevel rise. Sediment influx is responsible for the regulation of long profiles by paragenesis and contributes to the evolution of profiles from looping to water table caves. Dating methods allow identification of the timing of cave level evolution. The term Ghost-rock karstification is used to describe a 2-phase process of speleogenesis, with a first phase of partial solution of rock along fractures in low gradient conditions leaving a porous matrix, the ghost-rock, then a second phase of mechanical removing of the ghost-rock mainly by turbulent flow in high gradient conditions opening the passages and forming maze caves. The first weathering phase can be related either to epigenic infiltration or to hypogenic upflow, especially in marginal areas of sedimentary basins. The vertical pattern of epigenic caves is mainly controlled by timing, geological structure, types of flow and base-level changes. We define several cave types as (1) juvenile, where they are perched above underlying aquicludes; (2) looping, where recharge varies greatly with time, to produce epiphreatic loops; (3) water-table caves where flow is regulated by a semi-pervious cover; and (4) caves in the equilibrium stage where flow is transmitted without significant flooding. Successive base-level drops caused by valley entrenchment make cave levels, whereas baselevel rise is defined in the frame of the Per ascensum Model of Speleogenesis (PAMS), where deep passages are flooded and drain through vauclusian springs. The PAMS can be active after any type of baselevel rise (transgression, fluvial aggradation, tectonic subsidence) and explains most of the deep phreatic cave systems except for hypogenic.

The term Hypogenic speleogenesis is used to describe cave development by deep upflow independent of adjacent recharge areas. Due to its deep origin, water frequently has a high CO2-H2S concentration and a thermal anomaly, but not systemati­cally. Numerous dissolution processes can be involved in hypogenic speleogenesis, which often include deep-seated acidic sources of CO2 and H2S, “hydrothermal” cooling, mixing corrosion, Sulfuric Acid Speleogenesis (SAS), etc. SAS particularly involves the condensation-corrosion processes, resulting in the fast expansion of caves above the water table, i.e. in an atmo­spheric environment. The hydrogeological setting of hypogenic speleogenesis is based on the Regional Gravity Flow concept, which shows at the basin scales the sites of convergences and upflows where dissolution focuses. Each part of a basin (mar­ginal, internal, deep zone) has specific conditions. The coastal basin is a sub-type. In deformed strata, flow is more complex according to the geological structure. However, upflow and hypogenic speleogenesis concentrate in structural highs (buried anticlines) and zones of major disruption (faults, overthrusts). In disrupted basins, the geothermal gradient “pumps” the me­teoric water at depth, making loops of different depths and characteristics. Volcanism and magmatism also produce deep hypogenic loops with “hyperkarst” characteristics due to a combination of deep-seated CO2, H2S, thermalism, and microbial activity. In phreatic conditions, the resulting cave patterns

can include geodes, 2–3D caves, and giant ascending shafts. Along the water table, SAS with thermal air convection induces powerful condensation-corrosion and the development of upwardly dendritic caves, isolated chambers, water table sulfuricacid caves. In the vadose zone, “smoking” shafts evolve under the influence of geothermal gradients producing air convectionand condensation-corrosion.

Likely future directions for research will probably involve analytical and modeling methods, especially using isotopes, dating, chemical simulations, and field investigations focused on the relationships between processes and resulting morphologies.


Research frontiers in speleogenesis. Dominant processes, hydrogeological conditions and resulting cave patterns, 2015,

Speleogenesis is the development of well-organized cave systems by fluids moving through fissures of a soluble rock. Epigenic caves induced by biogenic CO2 soil production are dominant, whereas hypogenic caves resulting from uprising deep flow not directly connected to adjacent recharge areas appear to be more frequent than previously considered. The conceptual models of epigenic cave development moved from early models, through the “four-states model” involving fracture influence to explain deep loops, to the digital models demonstrating the adjustment of the main flow to the water table. The relationships with base level are complex and cave levels must be determined from the elevation of the vadose-phreatic transitions. Since flooding in the epiphreatic zone may be important, the top of the loops in the epiphreatic zone can be found significantly high above the base level. The term Paragenesis is used to describe the upward development of conduits as their lower parts fill with sediments. This process often records a general baselevel rise. Sediment influx is responsible for the regulation of long profiles by paragenesis and contributes to the evolution of profiles from looping to water table caves. Dating methods allow identification of the timing of cave level evolution. The term Ghost-rock karstification is used to describe a 2-phase process of speleogenesis, with a first phase of partial solution of rock along fractures in low gradient conditions leaving a porous matrix, the ghost-rock, then a second phase of mechanical removing of the ghost-rock mainly by turbulent flow in high gradient conditions opening the passages and forming maze caves. The first weathering phase can be related either to epigenic infiltration or to hypogenic upflow, especially in marginal areas of sedimentary basins. The vertical pattern of epigenic caves is mainly controlled by timing, geological structure, types of flow and base-level changes. We define several cave types as (1) juvenile, where they are perched above underlying aquicludes; (2) looping, where recharge varies greatly with time, to produce epiphreatic loops; (3) water-table caves where flow is regulated by a semi-pervious cover; and (4) caves in the equilibrium stage where flow is transmitted without significant flooding. Successive base-level drops caused by valley entrenchment make cave levels, whereas baselevel rise is defined in the frame of the Per ascensum Model of Speleogenesis (PAMS), where deep passages are flooded and drain through vauclusian springs. The PAMS can be active after any type of baselevel rise (transgression, fluvial aggradation, tectonic subsidence) and explains most of the deep phreatic cave systems except for hypogenic.

The term Hypogenic speleogenesis is used to describe cave development by deep upflow independent of adjacent recharge areas. Due to its deep origin, water frequently has a high CO2-H2S concentration and a thermal anomaly, but not systemati­cally. Numerous dissolution processes can be involved in hypogenic speleogenesis, which often include deep-seated acidic sources of CO2 and H2S, “hydrothermal” cooling, mixing corrosion, Sulfuric Acid Speleogenesis (SAS), etc. SAS particularly involves the condensation-corrosion processes, resulting in the fast expansion of caves above the water table, i.e. in an atmo­spheric environment. The hydrogeological setting of hypogenic speleogenesis is based on the Regional Gravity Flow concept, which shows at the basin scales the sites of convergences and upflows where dissolution focuses. Each part of a basin (mar­ginal, internal, deep zone) has specific conditions. The coastal basin is a sub-type. In deformed strata, flow is more complex according to the geological structure. However, upflow and hypogenic speleogenesis concentrate in structural highs (buried anticlines) and zones of major disruption (faults, overthrusts). In disrupted basins, the geothermal gradient “pumps” the me­teoric water at depth, making loops of different depths and characteristics. Volcanism and magmatism also produce deep hypogenic loops with “hyperkarst” characteristics due to a combination of deep-seated CO2, H2S, thermalism, and microbial activity. In phreatic conditions, the resulting cave patterns

can include geodes, 2–3D caves, and giant ascending shafts. Along the water table, SAS with thermal air convection induces powerful condensation-corrosion and the development of upwardly dendritic caves, isolated chambers, water table sulfuricacid caves. In the vadose zone, “smoking” shafts evolve under the influence of geothermal gradients producing air convectionand condensation-corrosion.

Likely future directions for research will probably involve analytical and modeling methods, especially using isotopes, dating, chemical simulations, and field investigations focused on the relationships between processes and resulting morphologies.


Chemistry and Karst, 2015, White, William B.

The processes of initiation and development of characteris­tic surface karst landforms and underground caves are nearly all chemical processes. This paper reviews the advances in understanding of karst chemistry over the past 60 years. The equilibrium chemistry of carbonate and sulfate dissolution and deposition is well established with accurate values for the necessary constants. The equations for bulk kinetics are known well enough for accurate modeling of speleogenetic processes but much is being learned about atomic scale mechanisms. The chemistry of karst waters, expressed as parameters such as total dissolved carbonates, saturation index, and equilibrium carbon dioxide pressure are useful tools for probing the internal char­acteristics of karst aquifers. Continuous records of chemical parameters (chemographs) taken from springs and other karst waters mapped onto discharge hydrographs reveal details of the internal flow system. The chemistry of speleothem deposi­tion is well understood at the level of bulk processes but much has been learned of the surface chemistry on an atomic scale by use of the atomic force microscope. Least well understood is the chemistry of hypogenetic karst. The main chemical reac­tions are known but equilibrium modeling could be improved and reaction kinetics are largely unknown.


Results 1966 to 1980 of 1983
You probably didn't submit anything to search for