Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That phreatobia is an animal association found in water separating grains of sand or fine gravel [25].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for land (Keyword) returned 2159 results for the whole karstbase:
Showing 2146 to 2159 of 2159
TECTONIC CONTROL OF CAVE DEVELOPMENT: A CASE STUDY OF THE BYSTRA VALLEY IN THE TATRA MTS., POLAND, 2015,

Tectonic research and morphologi calobservations were carried out in six caves (Kalacka, Goryczkowa, Kasprowa Ni¿na, Kasprowa OErednia, Kasprowa Wy¿nia and Magurska) in the Bystra Val ley, in the Tatra Moun -tains. There are three cave lev els, with the youn gest ac tive and the other two in ac tive, re flect ing de vel op ment partly un der epiphreatic and partly un der phreatic con di tions. These stud ies dem on strate strong con trol of the cave pat tern by tec tonic fea tures, in clud ing faults and re lated frac tures that orig i nated or were re ju ve nated dur ing up lift,last ing from the Late Mio cene. In a few lo cal cases, the cave pas sages are guided by the com bined in flu ence of bed ding, joints and frac tures in the hinge zone of a chev ron anticline. That these cave pas sages are guided by tec tonic struc tures, ir re spec tive of lithological dif fer ences, in di cates that these proto-con duits were formed by “tec tonic in cep tion”. Dif fer ences in the cave pat tern be tween the phreatic and epiphreatic zones at a given cave level may be a re sult of mas sif re lax ation. Be low the bot tom of the val ley, the ef fect of stress on the rock mass is re lated to the re gional stress field and only in di vid ual faults ex tend be low the bot tom of the val ley. Thus in the phreatic zone, the flow is fo cused and a sin gle con duit be comes en larged. The lo cal ex ten sion is more in tense in the epiphreatic zone above the val ley floor and more frac tures have been suf fi ciently ex tended to al low wa ter to flow. The wa ter mi grates along a net work of fis sures and a maze could be form ing. Neotectonic dis place ments (of up to 15 cm), which are more re cent than the pas sages, were also iden ti fied in the caves. Neotectonic ac tiv ity is no lon ger be lieved to have as great an im pact on cave mor phol ogy as pre vi ously was thought. Those faults with dis place ments of sev eral metres, de scribed as youn ger than the cave by other au thors, should be re clas si fied as older faults, the sur faces of which have been ex posed by speleogenesis. The pos si ble pres ence of neotectonic faults with greater dis place ments is not ex cluded, but they would have had a much greater mor pho log i cal im pact than the ob served fea tures sug gest.


Evaporite karst in three interior layered deposits in Iani Chaos, Mars, 2015,

This paper describe the karst landforms observed in three interior layered deposits located in Iani Chaos, a large depression located in the equatorial region of Mars, characterised by spectral signatures of monohydrated and polyhydrated sulfate such as kieserite and gypsum. A morphological and morphometric survey of the ILD surface morphologies through an integrated analysis of the available Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) highlighted the presence of depressions of various shapes and sizes. These Martian landforms interpreted as doline of polygenetic origin resemble similarly karst landforms that can be observed both in different karst terrains on Earth and in other regions of Mars. The karst landforms observed suggest a climatic change and the presence of liquid water, probably due to ice melting, in the late Amazonian age.


Uplifted flank margin caves in telogenetic limestones in the Gulf of Orosei (Central-East Sardinia—Italy) and their palaeogeographic significance, 2015, D'angeli Ilenia Maria, Sanna Laura, Clazoni Claudio, De Waele Jo

Thiswork reports the results of geomorphological observations carried out in the coastal Fico Cave and surrounding areas (Baunei, Central East Sardinia) in the Gulf of Orosei. A tidal notch, generally believed to be of Eemian (MIS 5e) age, is barely visible at 8.5 above present sea level (asl), some metres below the main entrance of the cave. Old cave passages, now partially opened by cliff retreat and parallel to the coastline, are clearly visible at around 14 m asl and correspond to the main level of Fico Cave. Two more notches are located higher, at 22 and 50 m asl. Fico Cave itself is composed of at least 6 clearly distinguished more or less horizontal levels (−10 m below present sea level (bsl), and +14, +22, +40, +50, and +63 m asl), independent of the stratal dip, arguing for a sea-level, and hence, fresh-water lens control. Cave passages develop along main fractures more or less parallel to the coastline and never extend landward for more than 150 m, mostly ending blindly, or diminishing in their dimensions progressively landward. Most passages only contain clay deposits, lacking fluvial or marine sediments or typical fluvial erosion morphologies (i.e. scallops).

It is suggested from this body of evidence that Fico Cave was formed in the coastal mixing zone along major discontinuities during several Quaternary interglacial periods, when sea level was high and relatively stable for enough time to develop large dissolutional voids. The geomorphological observations indicate the main +14 m asl level of the cave to have formed during MIS 9, and was heavily reworked during MIS 5, while the higher levels are relative to older interglacial highstands that occurred between 1 Ma and 325 ka. The small active branch developed below present sea level has formed during MIS 7 (225 ka). These observations shed new light on the position of the MIS 5e highstand markers in this area of the coast, much higher than previously thought.


Sulphuric acid speleogenesis and landscape evolution: Montecchio cave, Albegna river valley (Southern Tuscany, Italy), 2015, Piccini Leonardo, De Waele Jo, Galli Ermanno, Polyak Victor J. , Bernasconi Stefano M. Asmerom Yemane

Montecchio cave (Grosseto province, Tuscany, Italy) opens at 320 m asl, in a small outcrop of Jurassic limestone (Calcare Massiccio Fm.), close to the Albegna river. This area is characterised by the presence of several thermal springs and the outcropping of travertine deposits at different altitudes. The Montecchio cave, with passage length development of over 1700 m, is characterised by the presence of several sub-horizontal passages and many medium- and small-scale morphologies indicative of sulphuric acid speleogenesis (SAS). The thermal aquifer is intercepted at a depth of about 100 m below the entrance: the water temperature exceeds 30 °C and sulphate content is over 1300 mg l−1. The cave hosts large gypsumdeposits from40 to 100mbelowthe entrance that are by-products of the reaction between sulphuric acid and the carbonate host rock. The lower part of the cave hosts over 1 m thick calcite cave raft deposits, which are evidence of long-standing, probably thermal, water in an evaporative environment related to significant air currents.

Sulphur isotopes of gypsum have negative δ34S values (from−28.3 to−24.2‰), typical of SAS. Calcite cave rafts and speleogenetic gypsumboth yield young U/Th ages varying from68.5 ka to 2 ka BP, indicating a rapid phase of dewatering followed by gypsum precipitation in aerate environment. This fastwater table lowering is related to a rapid incision of the nearby Albegna river, and was followed by a 20–30 m fluctuation of the thermal water table, as recorded in the calcite raft deposits and gypsum crusts.


International Conference on Groundwater in Karst, Programme and Abstracts, 2015, University of Birmingham, Birmingham, 2015,

Carbonate rocks present a particular challenge to hydrogeologists as the major groundwater flux is through an integrated network of dissolutionally enlarged channels that discharge via discrete springs. The channels span a very wide aperture range: the smallest are little more than micro-fractures or pathways through the rock matrix but at the other end of the spectrum (and commonly in the same rock mass) channels may grow to dimensions where they can be explored by humans and are called caves. Groundwater transmission through the smaller channels that are commonly intersected by boreholes is very slow and has often been analysed using equivalent porous media models although the limitations of such models are increasingly recognised. At the other end of the spectrum (and commonly in the same rock mass) flow through the larger conduits is analogous to ‘a surface stream with a roof’ and may be amenable to analysis by models devised for urban pipe networks. Regrettably, hydrogeologists have too often focussed on the extreme ends of the spectrum, with those carbonates possessing large and spectacular landforms regarded as “karst” whereas carbonates with little surface expression commonly, but incorrectly labelled as “non-karstic”. This can lead to failures in resource management. Britain is remarkable for the variety of carbonate rocks that crop out in a small geographical area. They range in age and type from Quaternary freshwater carbonates, through Cenozoic, Mesozoic and Paleozoic limestones and dolostones, to Proterozoic metacarbonates. All near surface British carbonates are soluble and groundwater is commonly discharged from them at springs fed by dissolutionally enlarged conduits, thereby meeting one internationally accepted definition of karst. Hence, it is very appropriate that Britain, and Birmingham as Britain's second largest city, hosts this International Conference on Groundwater in Karst. The meeting will consider the full range of carbonate groundwater systems and will also have an interdisciplinary approach to understanding karst in its fullest sense.


Deep speleological salt contamination in Mediterranean karst aquifers: perspectives for water supply, 2015,

On the Mediterranean coast, submarine karst springs are common. Most of them are brackish and various unsuccessful attempts in France, Greece, and Italy indicate that it is impossible to diminish the salinity at the spring. Based on studies on the shores of south-eastern France and in Kefalonia (Greece), we propose a working model that explains the mechanism of salt contamination. During the Messinian Deep Stage (-5.9 to 5.3 Ma), a substantial sea-level lowering in the Mediterranean allowed the existence of cave networks extending several hundreds of meters below the present sea level. Seawater is now sucked into the system through these caves. This mechanism is supported by a study of the Port Miou underground river (Cassis, France). In the Port Miou cave system, which extends to 250 m below sea level, titanium and heavy metals are present in the sediment. They are similar to those found in the Cassidaigne submarine canyon, which reinforces the hypothesis of a connection between the cave and the canyon. Recent geological studies prove a Messinian origin for the canyon and support the deep contamination model. The model is also supported by examples on Kefalonia Island (Greece) and in the Toix–Moraig system (Spain) where salt-water intrusions are observed in coastal sinkholes and sea caves. This model explains why various attempts to diminish the salinity of these brackish springs, through the construction of dams to increase head, have failed.On the Mediterranean coast, submarine karst
springs are common. Most of them are brackish and various
unsuccessful attempts in France, Greece, and Italy
indicate that it is impossible to diminish the salinity at the
spring. Based on studies on the shores of south-eastern
France and in Kefalonia (Greece), we propose a working
model that explains the mechanism of salt contamination.
During the Messinian Deep Stage (-5.9 to 5.3 Ma), a
substantial sea-level lowering in the Mediterranean
allowed the existence of cave networks extending several
hundreds of meters below the present sea level. Seawater is
now sucked into the system through these caves. This
mechanism is supported by a study of the Port Miou
underground river (Cassis, France). In the Port Miou cave
system, which extends to 250 m below sea level, titanium
and heavy metals are present in the sediment. They are
similar to those found in the Cassidaigne submarine canyon,
which reinforces the hypothesis of a connection
between the cave and the canyon. Recent geological
studies prove a Messinian origin for the canyon and support
the deep contamination model. The model is also
supported by examples on Kefalonia Island (Greece) and in
the Toix–Moraig system (Spain) where salt-water intrusions
are observed in coastal sinkholes and sea caves. This
model explains why various attempts to diminish the
salinity of these brackish springs, through the construction
of dams to increase head, have failed.


Depth and timing of calcite spar and “spar cave” genesis: Implications for landscape evolution studies, 2015,

Calcite spar (crystals >1 cm in diameter) are common in limestone and dolostone terrains. In the Guadalupe Mountains, New Mexico and west Texas, calcite spar is abundant and lines small geode-like caves. Determining the depth and timing of formation of these large scalenohedral calcite crystals is critical in linking the growth of spar with landscape evolution. In this study, we show that large euhedral calcite crystals precipitate deep in the phreatic zone (400–800 m) in these small geode-like caves (spar caves), and we propose both are the result of properties of supercritical CO2 at that depth. U-Pb dating of spar crystals shows that they formed primarily between 36 and 28 Ma. The 87Sr/86Sr values of the euhedral calcite spar show that the spar has a signifi cantly higher 87Sr/86Sr (0.710–0.716) than the host Permian limestone (0.706–0.709). This indicates the spar formed from waters that are mixed with, or formed entirely from, a source other than the surrounding bedrock aquifer, and this is consistent with hypogene speleogenesis at signifi cant depth. In addition, we conducted highly precise measurements of the variation in nonradiogenic isotopes of strontium, 88Sr/86Sr, expressed as 88Sr, the variation of which has previously been shown to depend on temperature of precipitation. Our preliminary 88Sr results from the spar calcite are consistent with formation at 50–70 °C. Our fi rst U-Pb results show that the spar was precipitated during the beginning of Basin and Range tectonism in a late Eocene to early Oligocene episode, which was coeval with two major magmatic periods at 36–33 Ma and 32–28 Ma. A novel speleogenetic process that includes both the dissolution of the spar caves and precipitation of the spar by the same speleogenetic event is proposed and supports the formation of the spar at 400–800 m depth, where the transition from supercritical to subcritical CO2 drives both dissolution of limestone during the main speleogenetic event and precipitation of calcite at the terminal phase of speleogenesis. We suggest that CO2 is derived from contemporaneous igneous activity. This proposed model suggests that calcite spar can be used for reconstruction of landscape evolution


Basinscale conceptual groundwater flow model for an unconfined and confined thick carbonate region, 2015,

Application of the gravitydriven regional groundwater flow (GDRGF) concept to the hydrogeologically complex thick carbonate system of the Transdanubian Range (TR), Hungary, is justified based on the principle of hydraulic continuity. The GDRGF concept informs about basin hydraulics and groundwater as a geologic agent. It became obvious that the effect of heterogeneity and anisotropy on the flow pattern could be derived from hydraulic reactions of the aquifer system. The topography and heat as driving forces were examined by numerical simulations of flow and heat transport. Evaluation of groups of springs, in terms of related discharge phenomena and regional chloride distribution, reveals the dominance of topographydriven flow when considering flow and related chemical and temperature patterns. Moreover, heat accumulation beneath the confined part of the system also influences these patterns. The presence of cold, lukewarm and thermal springs and related wetlands, creeks, mineral precipitates, and epigenic and hypogenic caves validates the existence of GDRGF in the system. Vice versa, groups of springs reflect rock–water interaction and advective heat transport and inform about basin hydraulics. Based on these findings, a generalized conceptual GDRGF model is proposed for an unconfined and confined carbonate region. An interface was revealed close to the margin of the unconfined and confined carbonates, determined by the GDRGF and freshwater and basinal fluids involved. The application of this model provides a background to interpret manifestations of flowing groundwater in thick carbonates generally, including porosity enlargement and hydrocarbon and heat accumulation.


The current status of mapping karst areas and availability of public sinkhole-risk resources in karst terrains of the United States, 2015,

Subsidence from sinkhole collapse is a common occurrence in areas underlain by water-soluble rocks such as carbonate and evaporite rocks, typical of karst terrain. Almost all 50 States within the United States (excluding Delaware and Rhode Island) have karst areas, with sinkhole damage highest in Florida, Texas, Alabama, Missouri, Kentucky, Tennessee, and Pennsylvania. A conservative estimate of losses to all types of ground subsidence was $125 million per year in 1997. This estimate may now be low, as review of cost reports from the last 15 years indicates that the cost of karst collapses in the United States averages more than $300 million per year. Knowing when a catastrophic event will occur is not possible; however, understanding where such occurrences are likely is possible. The US Geological Survey has developed and main-tains national-scale maps of karst areas and areas prone to sinkhole formation. Several States provide additional resources for their citizens; Alabama, Colorado, Florida, Indiana, Iowa, Kentucky, Minnesota, Missouri, Ohio, and Pennsylvania maintain databases of sinkholes or karst features, with Florida, Kentucky, Missouri, and Ohio providing sinkhole reporting mechanisms for the public.


Hidden sinkholes and karst cavities in the travertine plateau of a highly-populated geothermal seismic territory (Tivoli, central Italy), 2015,

Sinkholes and other karst structures in settled carbonate lands can be a significant source of hazard for humans and human works. Acque Albule, the study area of this work, is a Plio-Pleistocene basin near Rome, central Italy, superficially filled by a large and thick deposit of late Pleistocene thermogene travertine. Human activities blanket large portions of the flat territory covering most evidence from geological surface processes and potentially inducing scientists and public officials to underestimate some natural hazards including those connected with sinkholes. To contribute to the proper assessment of these hazards, a geomorphologic study of the basin was performed using digital elevation models (DEMs), recent aerial photographs, and field surveys. Historical material such as old aerial photographs and past geomorphologic studies both pre-dating the most part of quarrying and village building was also used together with memories of the elderly population. This preliminary study pointed out the presence of numerous potentially active sinkholes that are at present largely masked by either quarrying or overbuilding. Where this first study pointed out the apparent absence of sinkholes in areas characterized by high density of buildings, a detailed subsurface study was performed using properly-calibrated electrical resistivity tomography (ERT) and dynamic penetration measurements (DPSH), together with some borehole logs made available from the local municipality. This second study highlighted the presence of sinkholes and caves that are, this time, substantially hidden to the resolution of standard methods and materials such as aerial photographs, DEMs, and field surveys. Active sinkhole subsidence in the Acque Albule Basin may explain, at least in part, the frequent damages that affect numerous buildings in the area. The main conclusion from this study is that the mitigation of sinkhole hazard in highly populated areas has to pass through a thorough search of (hidden) sinkholes that can be masked by the Anthropocenic molding and blanketing of the territory. For these purposes, data from historical (pre-Anthropocene) documents as well as, where possible, subsurface investigations are fundamental.


Sinkholes, collapse structures and large landslides in an active salt dome submerged by a reservoir: The unique case of the Ambal ridge in the Karun River, Zagros Mountains, Iran, 2015,

Ambal ridge, covering 4 km2, is a salt pillowof Gachsaran Formationwith significant salt exposures in direct contact  with the Karun River, Zagros Mountains. The highly cavernous salt dome is currently being flooded by the  Gotvand Reservoir, second largest in Iran. Geomorphic evidence, including the sharp deflection of the Karun  River and defeated streams indicate that Ambal is an active halokinetic structure, probably driven by erosional  unloading. Around 30% of the salt dome is affected by large landslides up to ca. 50 × 106 m3 in volume. Slope  oversteepening related to fluvial erosion and halokinetic rise seems to be the main controlling factor. A total of  693 sinkholes have been inventoried (170 sinkholes/km2), for which a scaling relationship has been produced.  The depressions occur preferentially along a belt with a high degree of clustering. This spatial distribution is  controlled by the proximity to the river, slope gradient and halite content in the bedrock. A large compound  depression whose bottom lies below the normal maximum level of the reservoir will likely be flooded by  water table rise forming a lake. The impoundment of the reservoir has induced peculiar collapse structures  220–280 m across, expressed by systems of arcuate fissures and scarps. Rapid subsurface salt dissolution is  expected to generate and reactivate a large number of sinkholes and may reactivate landslideswith a significant  vertical component due to lack of basal support.


Basin-scale conceptual groundwater flow model for an unconfined and confined thick carbonate region, 2015,

Application of the gravity-driven regional  groundwater flow (GDRGF) concept to the  hydrogeologically complex thick carbonate system of the  Transdanubian Range (TR), Hungary, is justified based on  the principle of hydraulic continuity. The GDRGF concept  informs about basin hydraulics and groundwater as a  geologic agent. It became obvious that the effect of  heterogeneity and anisotropy on the flow pattern could be  derived from hydraulic reactions of the aquifer system.  The topography and heat as driving forces were examined  by numerical simulations of flow and heat transport.  Evaluation of groups of springs, in terms of related  discharge phenomena and regional chloride distribution,  reveals the dominance of topography-driven flow when  considering flow and related chemical and temperature  patterns. Moreover, heat accumulation beneath the confined  part of the system also influences these patterns. The  presence of cold, lukewarm and thermal springs and  related wetlands, creeks, mineral precipitates, and epigenic  and hypogenic caves validates the existence of GDRGF in  the system. Vice versa, groups of springs reflect rock–  water interaction and advective heat transport and inform  about basin hydraulics. Based on these findings, a  generalized conceptual GDRGF model is proposed for  an unconfined and confined carbonate region. An interface  was revealed close to the margin of the unconfined and  confined carbonates, determined by the GDRGF and  freshwater and basinal fluids involved. The application  of this model provides a background to interpret manifestations  of flowing groundwater in thick carbonates  generally, including porosity enlargement and hydrocarbon  and heat accumulation.


Chemistry and Karst, 2015, White, William B.

The processes of initiation and development of characteris­tic surface karst landforms and underground caves are nearly all chemical processes. This paper reviews the advances in understanding of karst chemistry over the past 60 years. The equilibrium chemistry of carbonate and sulfate dissolution and deposition is well established with accurate values for the necessary constants. The equations for bulk kinetics are known well enough for accurate modeling of speleogenetic processes but much is being learned about atomic scale mechanisms. The chemistry of karst waters, expressed as parameters such as total dissolved carbonates, saturation index, and equilibrium carbon dioxide pressure are useful tools for probing the internal char­acteristics of karst aquifers. Continuous records of chemical parameters (chemographs) taken from springs and other karst waters mapped onto discharge hydrographs reveal details of the internal flow system. The chemistry of speleothem deposi­tion is well understood at the level of bulk processes but much has been learned of the surface chemistry on an atomic scale by use of the atomic force microscope. Least well understood is the chemistry of hypogenetic karst. The main chemical reac­tions are known but equilibrium modeling could be improved and reaction kinetics are largely unknown.


Karst environment, 2016, Culver D. C.

Karst environments can be grouped into three broad categories, based on their vertical position in the landscape. There are surface habitats, ones exposed to light; there are shallow subterranean (aphotic) habitats oft en with small to intermediate sized spaces; there are deep subterranean habitats (caves) with large sized spaces. Faunal records are most complete for caves, and on a global basis, more than 10,000 species are limited to this habitat. Hundreds of other species, especially bats, depend on caves for some part of their life cycle. A large, but most unknown number of species are limited to shallow subterranean habitats in karst, such as epikarst and the milieu souterrain superficiel. Species in both these categories of habitats typically show a number of morphological adaptations for life in darkness, including loss of eyes and pigment, and elaboration of extra-optic sensory structures. Surface habitats, such as sinkholes, karst springs, thin soils, and rock faces, are habitats, but not always recognized as karst habitats. Both aphotic karst habitats and twilight habitats (such as open air pits) may serve as important temporary refuges for organisms avoiding temperature extremes on the surface.


Results 2146 to 2159 of 2159
You probably didn't submit anything to search for