MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_left.php on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That radioisotope is an unstable isotope of an element that decays or disintegrates spontaneously, emitting radiation [22].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for porosity (Keyword) returned 250 results for the whole karstbase:
Showing 226 to 240 of 250
DEEP TIME ORIGINS OF SINKHOLE COLLAPSE FAILURES IN SEWAGE LAGOONS IN SOUTHEAST MINNESOTA, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Alexander Jr. E. C. , Runkel A. C. , Tipping R. G.

Three of the approximately twenty-three municipal wastewater treatment lagoons constructed in the 1970s and 1980s in southeastern Minnesota’s karst region have failed through sinkhole collapse. Those collapses occurred between 1974 and 1992. All three failures occurred at almost exactly the same stratigraphic position. That stratigraphic interval, just above the unconformable contact between the Shakopee and Oneota Formations of the Ordovician Prairie du Chien Group is now recognized as one of the most ubiquitous, regional-scale, karst hydraulic high-transmissivity zones in the Paleozoic hydrostratigraphy of southeastern Minnesota. These karst aquifers have been developing multi-porosity conduit flow systems since the initial deposition of the carbonates about 480 million years ago. The existence of syndepositional interstratal karst unconformities between the Oneota and Shakopee Formations and between the Shakopee and St. Peter Formations, were recognized in the 1800s. About 270 million years ago galena, sphalerite and iron sulfides were deposited in pre-existing solution enlarged joints, bedding planes and caves. The region has been above sea level since the Cretaceous and huge volumes of fresh water have flowed through these rocks. The regional flow systems have changed from east-to-west in the Cenozoic, to north-to-south in or before the Pleistocene. The incision of the Mississippi River and its tributaries has and is profoundly rearranging the ground water flow systems as it varies the regional base levels during glacial cycles. The Pleistocene glacial cycles have removed many of the surficial karst features and buried even more of them under glacial sediments. High erosion rates from row crop agriculture between the us1850s and 1930s filled many of the conduit systems with soil. Over eighty years of soil conservation efforts have significantly reduced the flux of mobilized soil into the conduits. Those conduits are currently flushing much of those stored soils out of their spring outlets. Finally, the increased frequency and intensity of major storm events is reactivating conduit segments that have been clogged and inactive for millions of years.The karst solution voids into which the lagoons collapsed have formed over 480 million years. The recognition and mapping of this major karst zone will allow much more accurate karst hazard maps to be constructed and used in sustainable resource management decisions.


Hypogenic Karstification and Conduit System Controlling by Tectonic Pattern in Foundation Rocks of the Salman Farsi Dam in South-Western Iran, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Koleini M. , Van Rooy J. L. , Bumby A.

The Salman Farsi dam project is constructed on the Ghareh Agahaj River about 140km south of Shiraz city in the Zagros Mountains of southwestern Iran. This tectonic province of southwestern Iran is characterized by a simple folded sedimentary sequence. The dam foundation rocks compose of the Asmari Formation of Oligo-miocene and generally comprise of a variety of karstified carbonate rocks varying from strong to weak rocks. Most of the rocks exposed at the dam site show a primary porosity due to incomplete diagenetic recrystallization and compaction. In addition to these primary dispositions to weathering, layering conditions (frequency and orientation of bedding) and the subvertical tectonic discontinuities channeled preferably the infiltrating by deep-sited hydrothermal solutions. Consequently the porosity results to be enlarged by dissolution and the rocks are expected to be karstified and to develop cavities in correspondence of bedding, major joint planes and fault zones. This kind of karsts is named hypogenic karsts which associated to the ascendant warm solutions. Field observations indicate strong karstification and vuggy intercalations especially in the middle part of the Asmari succession. The biggest karst in the dam axis which identified by speleological investigations is Golshany Cave with volume of about 150,000 m3. The tendency of the Asmari limestone for strong dissolution can alert about the seepage from the reservoir and area of the dam locality


Hypogenic Karstification and Conduit System Controlling by Tectonic Pattern in Foundation Rocks of the Salman Farsi Dam in South-Western Iran, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Koleini Mehran, Van Rooy Jan Louis, Bumby Adam

The Salman Farsi dam project is constructed on the Ghareh Agahaj River about 140km south of Shiraz city in the Zagros Mountains of southwestern Iran. This tectonic province of southwestern Iran is characterized by a simple folded sedimentary sequence. The dam foundation rocks compose of the Asmari Formation of Oligo-miocene and generally comprise of a variety of karstified carbonate rocks varying from strong to weak rocks. Most of the rocks exposed at the dam site show a primary porosity due to incomplete diagenetic recrystallization and compaction. In addition to these primary dispositions to weathering, layering conditions (frequency and orientation of bedding) and the subvertical tectonic discontinuities channeled preferably the infiltrating by deep-sited hydrothermal solutions. Consequently the porosity results to be enlarged by dissolution and the rocks are expected to be karstified and to develop cavities in correspondence of bedding, major joint planes and fault zones. This kind of karsts is named hypogenic karsts which associated to the ascendant warm solutions. Field observations indicate strong karstification and vuggy intercalations especially in the middle part of the Asmari succession. The biggest karst in the dam axis which identified by speleological investigations is Golshany Cave with volume of about 150,000 m3. The tendency of the Asmari limestone for strong dissolution can alert about the seepage from the reservoir and area of the dam locality.


Using hydrogeochemical and ecohydrologic responses to understand epikarst process in semi-arid systems, Edwards plateau, Texas, USA, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Schwartz Benjamin F. , Schwinning Susanne, Gerrard Brett, Kukowski Kelly R. , Stinson Chasity L. , Dammeyer Heather C.

The epikarst is a permeable boundary between surface and subsurface environments and can be conceptualized as the vadose critical zone of epigenic karst systems which have not developed under insoluble cover. From a hydrologic perspective, this boundary is often thought of as being permeable in one direction only (down), but connectivity between the flow paths of water through the epikarst and the root systems of woody plants means that water moves both up and down across the epikarst. However, the dynamics of these flows are complex and highly dependent on variability in the spatial structure of the epikarst, vegetation characteristics, as well as temporal variability in precipitation and evaporative demand. Here we summarize insights gained from working at several sites on the Edwards Plateau of Central Texas, combining isotopic, hydrogeochemical, and ecophysiological methodologies. 1) Dense woodland vegetation at sites with thin to absent soils (0-30 cm) is in part supported by water uptake from the epikarst. 2) However, tree transpiration typically becomes water-limited in dry summers, suggesting that the plant-available fraction of stored water in the epikarst depletes quickly, even when sustained cave drip rates indicate that water is still present in the epikarst. 3) Flow paths for water that feeds cave drips become rapidly disconnected from the evaporation zone of the epikarst and out of reach for plant roots. 4) Deep infiltration and recharge does not occur in these systems without heavy or continuous precipitation that exceeds some threshold value. Thresholds are strongly correlated with antecedent potential evapotranspiration and rainfall, suggesting control by the moisture status of the epikarst evapotranspiration zone. The epikarst and unsaturated zone in this region can be conceptualized as a variably saturated system with storage in fractures, matrix porosity, and in shallow perched aquifers, most of which is inaccessible to the root systems of trees, although woody vegetation may control recharge thresholds.


Physical Structure of the Epikarst, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Jones, William K.

Epikarst is a weathered zone of enhanced porosity on or near the surface or at the soil/bedrock contact of many karst landscapes. The epikarst is essentially the upper boundary of a karst system but is also a reaction chamber where many organics accumulate and react with the percolating water. The epikarst stores and directs percolating recharge waters to the underlying karst aquifers. Epikarst permeability decreases with depth below the surface. The epikarst may function as a perched aquifer with a saturated zone that transmits water laterally for some distance until it drains slowly through fractures or rapidly at shaft drains or dolines. Stress-release and physical weathering as well as chemical dissolution play a role in epikarst development. Epikarst may be found on freshly exposed carbonates although epikarst that develops below a soil cover should form at a faster rate due to increased carbon dioxide produced by vegetation. The accumulation of soil within the fractures may create plugs that retard the downward movement of percolating water and creates a reservoir rich in organic material. The thickness of the epikarst zone typically ranges from a few meters to 15 meters, but vertical weathering of joints may be much deeper and lead to a “stone forest” type of landscape. Some dolines are hydrologically connected directly to the epikarst while other dolines may drain more directly to the deeper conduit aquifer and represent a “hole” in the epikarst. water stored in the epikarst may be lost to evapotranspiration, move rapidly down vertical shafts or larger joints, or drain out slowly through the soil infillings and small fractures. Much of the water pushed from the epikarst during storms is older water from storage that is displaced by the new event water.


Early-stage hypogene karstification in a mountain hydrologic system: A coupled thermohydrochemical model incorporating buoyant convection, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Chaudhuri A. , Rajaram H. , Viswanathan H

The early stage of hypogene karstification is investigated using a coupled thermohydrochemical model of a mountain hydrologic system, in which water enters along a water table and descends to significant depth (_1 km) before ascending through a central high-permeability fracture. The model incorporates reactive alteration driven by dissolution/ precipitation of limestone in a carbonic acid system, due to both temperature- and pressuredependent solubility, and kinetics. Simulations were carried out for homogeneous and heterogeneous initial fracture aperture fields, using the FEHM (Finite Element Heat and Mass Transfer) code. Initially, retrograde solubility is the dominant mechanism of fracture aperture growth. As the fracture transmissivity increases, a critical Rayleigh number value is exceeded at some stage. Buoyant convection is then initiated and controls the evolution of the system thereafter. For an initially homogeneous fracture aperture field, deep well-organized buoyant convection rolls form. For initially heterogeneous aperture fields, preferential flow suppresses large buoyant convection rolls, although a large number of smaller rolls form. Even after the onset of buoyant convection, dissolution in the fracture is sustained along upward flow paths by retrograde solubility and by additional ‘‘mixing corrosion’’ effects closer to the surface. Aperture growth patterns in the fracture are very different from those observed in simulations of epigenic karst systems, and retain imprints of both buoyant convection and preferential flow. Both retrograde solubility and buoyant convection contribute to these differences. The paper demonstrates the potential value of coupled models as tools for understanding the evolution and behavior of hypogene karst systems.


Hypogenic Karstification and Conduit System Controlling by Tectonic Pattern in Foundation Rocks of the Salman Farsi Dam in South-Western Iran, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Koleini M. , Louis J. , Rooy V. , Bumby A.

The Salman Farsi dam project is constructed on the Ghareh Agahaj River about 140km south of Shiraz city in the Zagros Mountains of southwestern Iran. This tectonic province of southwestern Iran is characterized by a simple folded sedimentary sequence. The dam foundation rocks compose of the Asmari Formation of Oligo-miocene and generally comprise of a variety of karstified carbonate rocks varying from strong to weak rocks. Most of the rocks exposed at the dam site show a primary porosity due to incomplete diagenetic recrystallization and compaction. In addition to these primary dispositions to weathering, layering conditions (frequency and orientation of bedding) and the subvertical tectonic discontinuities channeled preferably the infiltrating by deep-sited hydrothermal solutions. Consequently the porosity results to be enlarged by dissolution and the rocks are expected to be karstified and to develop cavities in correspondence of bedding, major joint planes and fault zones. This kind of karsts is named hypogenic karsts which associated to the ascendant warm solutions. Field observations indicate strong karstification and vuggy intercalations especially in the middle part of the Asmari succession. The biggest karst in the dam axis which identified by speleological investigations is Golshany Cave with volume of about 150,000 m3. The tendency of the Asmari limestone for strong dissolution can alert about the seepage from the reservoir and area of the dam locality


Permeability evolution due to dissolution and precipitation of carbonates using reactive transport modeling in pore networks, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943

A reactive transport model was developed to simulate reaction of carbonates within a pore network for the high-pressure CO2-acidified conditions relevant to geological carbon sequestration. The pore network was based on a synthetic oolithic dolostone. Simulation results produced insights that can inform continuum-scale models regarding reactioninduced changes in permeability and porosity. As expected, permeability increased extensively with dissolution caused by high concentrations of carbonic acid, but neither pH nor calcite saturation state alone was a good predictor of the effects, as may sometimes be the case. Complex temporal evolutions of interstitial brine chemistry and network structure led to the counterintuitive finding that a far-from-equilibrium solution produced less permeability change than a nearer-to-equilibrium solution at the same pH. This was explained by the pH buffering that increased carbonate ion concentration and inhibited further reaction. Simulations of different flow conditions produced a nonunique set of permeability-porosity relationships. Diffusive-dominated systems caused dissolution to be localized near the inlet, leading to substantial porosity change but relatively small permeability change. For the same extent of porosity change caused from advective transport, the domain changed uniformly, leading to a large permeability change. Regarding precipitation, permeability changes happen much slower compared to dissolution-induced changes and small amounts of precipitation, even if located only near the inlet, can lead to large changes in permeability. Exponent values for a power law that relates changes in permeability and porosity ranged from 2 to 10, but a value of 6 held constant when conditions led to uniform changes throughout the domain


Fingerprinting water-rock interaction in hypogene speleogenesis: potential and limitations of isotopic depth-profiling, 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Spötl Ch, Dublyansky Y.

Dissolution processes in karst regions commonly involve (meteoric) water whose stable isotopic (O, H, C) composition is distinctly different from that of the paleowaters from which the host rock (limestone, dolostone) formed. This, in theory, should lead to isotopic alteration of the host rock beyond the active solution surface as the modern karst water is out of isotopic equilibrium with the carbonate rock. No such alteration has been reported, however, in epigenetic karst systems. In contrast, isotopic alteration, commonly referred to as isotopic halos or fronts, are known from various hypogene systems (ore deposits, active hydro­thermal systems, etc.). These empirical observations suggest that stable isotope data may be a diagnostic tool to identify hypogene water-rock interactions particularly in cave systems whose origin is ambiguous.

We have been testing the applicability of this assumption to karst settings by studying the isotopic composition of carbonate host rocks in a variety of caves showing clear-cut hypogene morphologies. Cores drilled into the walls of cave chambers and galleries were stud­ied petrographically and the C and O isotope composition was analyzed along these cores, which typically reached a depth of 0.5 to 1.2 m. We identified three scenarios: (a) no isotopic alteration, (b) a sigmoidal isotope front within a few centimeters of the cave wall, and (c) pervasive isotope alteration throughout the entire core length. Type (a) was found in caves where the rate of cave wall retreat apparently outpaced the rate of isotopic alteration of the wall rock (which is typical, for example, for sulfuric acid speleogenesis). Type (c) was observed in geologically young, porous limestone showing evidence of alteration zones up to 5 m wide. The intermediate type (b) was identified in hypogene karst cavities developed in tight limestone, dolostone and marble.

Our data in conjunction with evidence from speleothems and their geochemical and fluid-inclusion composition suggest that the spa­tial extent of the isotopic alteration front depends on the porosity and permeability, as well as on the saturation state of the water. Wider alteration zones primarily reflect a higher permeability. Shifts are most distinct for oxygen isotopes and less so for carbon, whereby the amplitude depends on a number of variables, including the isotopic composition of unaltered host rock, the isotopic composition of the paleofluid, the temperature, the water/rock ratio, the surface of water-rock contact, the permeability of the rock, and the time available for isotope exchange. If the other parameters can be reasonably constrained, then semi-quantitative temperature estimates of the paleowater can be obtained assuming isotopic equilibrium conditions.

If preserved (scenarios b and c), alteration fronts are a strong evidence of hypogene speleogenesis, and, in conjunction with hypogene precipitates, allow to fingerprint the isotopic and physical parameters of the altering paleofluid. The reverse conclusion is not valid, however; i.e. the lack of evidence of isotopic alteration of the cave wall rock cannot be used to rule out hypogene paleo-water-rock interaction.


HYPOGENE CAVE PATTERNS IN IRON ORE CAVES: CONVERGENCE OF FORMS OR PROCESSES?, 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Auler A. S. , Piló L. B. , Parker C. W. , Senko J. M. , Sasowsky I. D. , Barton H. A.

Speleogenesis in iron ore caves may involve generation of porosity at depth with a later surficial phase associated with slope hydrological processes. The earlier phreatic phase results in morphological features similar to but much more irregular at wall and ceiling scale than what is observed in hypogene caves. Processes responsible for the generation of caves do not seem to follow normal karst geochemical paths, but instead occur through bacterially mediated redox reactions.


RESERVOIR CHARACTERISTICS OF THE COMPLEX KARST OF THE LLUCMAJOR PLATFORM, MALLORCA ISLAND (SPAIN): TOOL FOR HYDROCARBON RESERVOIR APPRAISAL, 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Lapointe, P. A.

The development of porosity in carbonate platforms takes many forms. Dissolution porosity as a result of karst processes is unique as it produces organized porosity and permeability over a variety of scales, and can do so in very short periods of time, geologically speaking. Karst developed in the Miocene formations of the Mallorca Island exhibits a complexity that seems to be very similar to the Kashagan or Aktote (Kazakhstan) or Kharyaga (CIS) karst reservoirs architecture characterized by different phases of island karst (mixing water) type with caves of different sizes and sponge karst, reworked and partly filled by paleosoils related to plateau karst developed during major sea level drops and finally hydro- (geo)-thermal processes. The Miocene rocks of the Llucmajor platform in the southwest of Mallorca island exhibit the three main types of karst developments that occurred through time, linked or not to glacio-eustatic changes: -1 Island karst (the flank-margin model); -2 Meteoric karst; -3 Hydrothermal karst/ These developments allow defining the so-called Complex Karst. Each of the terms is identified by specific overprints found in drilled wells (logs and cores) or on outcrops. The outcrops and subcrops of Mallorca Island represent an excellent analogue for understanding the complexity of the past carbonate platforms which are hydrocarbon targets for the industry


SPELEOGENESIS BY THE SULFIDIC SPRINGS AT NORTHERN SIERRA DE CHIAPAS, MEXICO, BASED ON THEIR WATER CHEMISTRY, 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Rosaleslagarde L. , Boston P. J.

Conspicuous brackish sulfidic springs have been described at the northern Sierra the Chiapas, Mexico. These springs are produced by a mixture between regional and local groundwater flow paths. The regional groundwater has an average Total Dissolved Ions of 3081 mg/L so it has a brackish composition. This brackish water is saturated with respect to calcite and dolomite but undersaturated with respect to gypsum, anhydrite and halite. The mass balance and the discharge rate are used to quantify the mass and volume of minerals that are dissolved by the brackish spring water following Appelo and Postma (1993). This quantification will allow comparing the various speleogenetic mechanisms in the area. This is considering the composition of the spring water is relatively constant over time, as it is suggested by periodic measurements at the Cueva de Villa Luz springs during the last 10 years.
Sulfur isotopes in the water are consistent with anhydrite dissolution as the main source of the sulfate to the brackish spring water. Thus, the average 6 mol/L of sulfate in the brackish springs are produced by dissolution of 6 mol of anhydrite after subtracting the sulfate that could result from evapotranspiration of rainwater. Each liter of brackish water dissolved an average of 882 mg of anhydrite, which are equivalent to dissolving 0.36 cm3 of this mineral considering a density of 2.981 g/cm3. Additionally, using the average brackish water discharge rate of 144 L/s, an average of 57 g of anhydrite are being dissolved each second per every liter of brackish water. This is a minimal value because some of the sulfate in the water is used by sulfate-reducing bacteria in the subsurface to produce the hydrogen sulfide in the spring water. The anhydrite subject to dissolution is found interbedded in the Cretaceous carbonates, either from the subsurface at 4,000 m below sea level to the carbonate outcrops.
Similarly, we can calculate the volume of halite that is being dissolved by the brackish springs, considering chloride is a conservative element and subtracting the chloride concentration from the rainwater from that of the spring water following Appelo & Postma (1993). The 22 mol/L of chloride in the brackish water can result from dissolution in the subsurface of 22 moles or 1.3 g of halite per liter of brackish water. This mass of halite dissolved is equal to 0.59 cm3 considering a density of 2.168 g/cm3. Alternatively, 118 g of halite are dissolved per second per each liter of brackish water if we use the average discharge rate of 144 L/s.
Even when the brackish springs are oversaturated with respect to calcite and dolomite, their dissolution is still possible due to the common ion-effect of calcium after anhydrite dissolution and by mixing of waters with different compositions. A range of 10 to 80 % of brackish water from the regional aquifers mixes with fresh water from the local aquifer based on their water chemistry. Additionally, sulfuric acid speleogenesis occurs due to the oxidation of hydrogen sulfide to sulfuric acid.
Finally, the increase in the chloride concentration of the fresh water springs with respect to the concentration in rainwater was used to estimate that from the 4000 mm/y of annual precipitation, only 4%, 158 to 182 mm/y, recharge the aquifers. This low percentage is slightly higher than the 3.3% recharge in marls, marly limestone, silts and clays (Sanz et al., 2011), probably because of the relatively small area of carbonate outcrops over the entire region and the lack of recharge in altitudes higher than 1500 m above sea level.
Sulfuric acid is the most obvious speleogenetic mechanism occurring in the caves of the northern Sierra de Chiapas, Mexico due to the high hydrogen sulfide concentration in the spring water. In addition, the location of the springs at a zone of regional and local discharge where waters from different composition converge and mix, and the amount of mixing calculated suggests mixing is also an important speleogenetic mechanism. However, the depth and the time constrains at which these two hypogenic mechanisms occur is still unknown. The relatively low rainwater recharge rate suggests epigenesis is limited. Most likely, the porosity created by dissolution of anhydrite and halite in the subsurface is occluded by the precipitation of calcite. Chemical modeling and petrography will help to elucidate the order of the reactions occurring in the subsurface.


Deep conduit flow in karst aquifers revisited, 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Kaufmann Georg, Gabrovšek Franci, Romanov Douchko

Caves formed in soluble rocks such as limestone, anhydrite, or gypsum are efficient drainage paths for water moving through the aquifer from the surface of the host rock towards a resurgence. The formation of caves is controlled by the physical solution through dissociation of the host rock by water or by the chemical solution through reactions of the host rock with water enriched with carbon dioxide. Caves as large underground voids are simply the end member of secondary porosity and conductivity characterizing the aquifer.

Caves and their relation to a present or past base level are found both close to a past or present water table (water-table caves) and extending far below a past or present water table (bathy-phreatic caves). One explanation for this different speleogenetic evolution is the structural control: Fractures and bedding partings are preferentially enlarged around more prominent faults, thus the fracture density in the host rock controls the speleogenetic evolution. This widely accepted explanation [e.g. Ford and Ewers, 1978] can be extended by adding other controls, e.g. a hydraulic control: As temperature generally increases with depth, density and viscosity of water change, and particularly the reduction of viscosity due to the increase in temperature enhances flow. This hypothesis was proposed by Worthington [2001, 2004] as a major controlling factor for the evolution of deep-bathyphreatic caves.

We compare the efficiency of structural and hydraulic control on the evolution of a cave passage by numerical means, adding a third control, the chemical control to address the change in solubility of the circulating water with depth. Our results show that the increase in flow through deep bathy-phreatic passages due to the decrease in viscosity is by far outweighted by effects such as the decrease in fracture width with depth due to lithostatic stress and the decrease in solubility with depth. Hence, the existence of deep bathy-phreatic cave passages is more likely to be controlled by the structural effect of prominent faults.


Structural and lithological guidance on speleogenesis in quartz–sandstone: Evidence of the arenisation process, 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943

A detailed petrographic, structural and morphometric investigation of different types of caves carved in the quartz–sandstones of the “tepui” table mountains in Venezuela has allowed identification of the main speleogenetic factors guiding cave pattern development and the formation of particular features commonly found in these caves, such as funnel-shaped pillars, pendants and floor bumps. Samples of fresh and weathered quartz–sandstone of the Mataui Formation (Roraima Supergroup) were characterised through WDS dispersive X-ray chemical analyses, picnometer measurements, EDAX analyses, SEM and thin-section microscopy. In all the caves two compositionally different strata were identified: almost pure quartz–sandstones, with content of silica over 95% and high primary porosity (around 4%), and phyllosilicate-rich quartz–sandstone, with contents of aluminium over 10% and low primary porosity (lower than 0.5%). Phyllosilicates are mainly pyrophyllite and kaolinite. SEMimages on weathered samples showed clear evidence of dissolution on quartz grains to different degrees of development, depending on the alteration state of the samples. Grain boundary dissolution increases the rock porosity and gradually releases the quartz grains, suggesting that arenisation is a widespread and effective weathering process in these caves. The primary porosity and the degree of fracturing of the quartz–sandstone beds are the main factors controlling the intensity and distribution of the arenisation process. Weathering along iron hydroxide or silt layers, which represent inception horizons, or a strata-bounded fracture network, predisposes the formation of horizontal caves in specific stratigraphic positions. The loose sands produced by arenisation are removed by piping processes, gradually creating anastomosing open-fracture systems and forming braided mazes, geometric networks or main conduit patterns, depending on the local lithological and structural guidance on the weathering process. This study demonstrates that all the typical morphologies documented in these quartz–sandstone caves can be explained as a result of arenisation, which is guided by layers with particular petrographic characteristics (primary porosity, content of phyllosilicates and iron hydroxides), and different degrees of fracturing (strata-bounded fractures or continuous dilational joints).

 


Transferring the concept of minimum energy dissipation from river networks to subsurface flow patterns, 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Hergarte Stefan, Winkler Gerfried, Birk Steffen

Principles of optimality provide an interesting alternative to modeling hydrological processes in detail on small scales and have received growing interest in the last years. Inspired by the more than 20 years old concept of minimum energy dissipation in river networks, we present a corresponding theory for subsurface flow in order to obtain a better understanding of preferential flow patterns in the subsurface. The concept describes flow patterns which are optimal in the sense of minimizing the total energy dissipation at a given recharge under the constraint of a given total porosity. Results are illustrated using two examples: two-dimensional flow towards a spring with a radial symmetric distribution of the porosity and dendritic flow patterns. The latter are found to be similar to river networks in their structure and, as a main result, the model predicts a power-law distribution of the spring discharges. In combination with two data sets from the Austrian Alps, this result is used for validating the model. Both data sets reveal power-law-distributed spring discharges with similar scaling exponents. These are, however, slightly larger than the exponent predicted by the model. As a further result, the distributions of the residence times strongly differ between homogeneous porous media and optimized flow patterns, while the mean residence times are similar in both cases.


Results 226 to 240 of 250
You probably didn't submit anything to search for