MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_left.php on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That oasis is a limited area in a desert supplied with water [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for subsurface (Keyword) returned 264 results for the whole karstbase:
Showing 241 to 255 of 264
Karst rivers particularity: an example from Dinaric karst (Croatia/Bosnia and Herzegovina), 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Bonacci Ognjen, Ž, Eljković, Ivana, Galić, Amira

The very complex system of sinking, losing and underground transboundary Karst rivers, lakes and aquifers in the central part of the deep and bare Dinaric karst in Croatia and Bosnia and Herzegovina is analysed. The groundwater and surface water are hydraulically connected through numerous karst forms which facilitate the exchange of water between the surface and subsurface. A complex underground conduit system is an inherent characteristic karst system analysed. Groundwater and surface water exchange with both adjacent and distant aquifers through underground routes or inflows from surface streams and artificial reservoirs. Because of a complex surface and underground karst features, which strongly influenced its hydrological and hydrogeological regime, the main open stream flow, with a longitude of about 106 km, undergoes eight name changes. In this paper, it is noted as ‘‘the eight-name river’’. In fact, it represents one river with losing, sinking and underground stream sections. Different surface and underground karst forms play crucial roles in the way the water flowing over the surface and on the underground sections of its catchment. The analysed area is full of varied and often spectacular surface landforms, including for example the Blue and Red Lakes and the Kravice Waterfall. The analyses made in the paper show the existence of a decreasing trend of mean annual discharges on the eight-name river, which can cause numerous problems in the regional water resource management of this transboundary river and catchment.


Deep hydrogeology: a discussion of issues and research needs, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Tsang Chinfu, Niemi Auli

In this essay, “deep hydrogeology” is somewhat arbitrarily defined as hydrogeology in the subsurface deeper than 1 km, below which the effect of residual permeability at high stresses becomes evident (Neuzil 2003; Rutqvist and Stephansson 2003; Liu et al. 2009). Studies have shown that meteoric fluids are present in the earth’s crust from land surface to at least a depth of 10–15 km (Kozlowsky 1987; Taylor Jr 1990; Zharikov et al. 2003; Ge et al. 2003). At such depths, interaction with surface water and surface events over time periods of 100 or 1,000 years may be minimal, except in areas of very deep mining activities or where deep convection is enhanced by active magmatism. Deep drilling to several kilometers in depth is often done for petroleum and geothermal reservoir exploration and exploitation. The focus of such activities is reservoir identification, capacity evaluation, and fluid and heat extractability. However, it is largely an open area of research to understand the state, structure and evolution of deep hydrogeology over time scales of tens of thousands of years or more, especially in areas lacking petroleum and geothermal resources. Interest in attaining such an understanding has emerged from the need for long-term predictions related to nuclear waste disposal and from recognition of the role that hydrogeology may play in seismicity, orogenesis and various geological processes, as well as in global fluid and chemical cycles. A number of wide-ranging questions may be asked regarding deep hydrogeology, several of which are as follows: What are the current and past states of fluid pressure, temperature and chemical composition in deep formations? How does fluid transport mass and heat? What are the fluid sources and driving mechanisms? What are the magnitude and distribution of porosity and permeability? What are the occurrence and characteristics of large-scale flow, including thermally and chemically driven convection systems? What is the nature of local anomalous fluid pressures and what are their implications? The purpose of this essay is to discuss key issues and research needs in deep hydrogeology. It is based on a workshop on the subject held at Uppsala University in Sweden, with participants from 11 countries, including the USA, Russia, Japan and a number of European countries (Tsang et al. 2012). The following discussion will be divided into sections on permeability structures, driving forces, coupled processes, borehole testing and data analysis, followed by a few concluding remarks.


Deep 3D thermal modelling for the city of Berlin (Germany), 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Sippel Judith, Fuchs Sven, Cacace Mauro, Braatz Anna, Kastner Oliver, Huenges Ernst, Scheckwenderoth Magdalena

This study predicts the subsurface temperature distribution of Germany’s capital Berlin. For this purpose, a data-based lithosphere-scale 3D structural model is developed incorporating 21 individual geological units. This model shows a horizontal grid resolution of (500 9 500) m and provides the geometric base for two different approaches of 3D thermal simulations: (1) calculations of the steadystate purely conductive thermal field and (2) simulations of coupled fluid flow and heat transport. The results point out fundamentally different structural and thermal configurations for potential geothermal target units. The top of the Triassic Middle Buntsandstein strongly varies in depth (159–2,470 m below sea level) and predicted temperatures (15–95 _C), mostly because of the complex geometry of the underlying Permian Zechstein salt. The top of the sub-salt Sedimentary Rotliegend is rather flat (2,890–3,785 m below sea level) and reveals temperatures of 85–139 _C. The predicted 70 _C-isotherm is located at depths of about 1,500–2,200 m, cutting the Middle Buntsandstein over large parts of Berlin. The 110 _C-isotherm at 2,900–3,700 m depth widely crosscuts the Sedimentary Rotliegend. Groundwater flow results in subsurface cooling the extent of which is strongly controlled by the geometry and the distribution of the Tertiary Rupelian Clay. The cooling effect is strongest where this clay-rich aquitard is thinnest or missing, thus facilitating deep-reaching forced convective flow. The differences between the purely conductive and coupled models highlight the need for investigations of the complex interrelation of flow- and thermal fields to properly predict temperatures in sedimentary systems.


Deep 3D thermal modelling for the city of Berlin (Germany), 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Sippel Judith, Fuchs Sven, Cacace Mauro, Braatz Anna, Kastner Oliver, Huenges Ernst, Scheckwenderoth Magdalena

This study predicts the subsurface temperature distribution of Germany’s capital Berlin. For this purpose, a data-based lithosphere-scale 3D structural model is developed incorporating 21 individual geological units. This model shows a horizontal grid resolution of (500 9 500) m and provides the geometric base for two different approaches of 3D thermal simulations: (1) calculations of the steady state purely conductive thermal field and (2) simulations of coupled fluid flow and heat transport. The results point out fundamentally different structural and thermal configurations for potential geothermal target units. The top of the Triassic Middle Buntsandstein strongly varies in depth (159–2,470 m below sea level) and predicted temperatures (15–95 _C), mostly because of the complex geometry of the underlying Permian Zechstein salt. The top of the sub-salt Sedimentary Rotliegend is rather flat (2,890–3,785 m below sea level) and reveals temperatures of 85–139 _C. The predicted 70 _C-isotherm is located at depths of about 1,500–2,200 m, cutting the Middle Buntsandstein over large parts of Berlin. The 110 _C-isotherm at 2,900–3,700 m depth widely crosscuts the Sedimentary Rotliegend. Groundwater flow results in subsurface cooling the extent of which is strongly controlled by the geometry and the distribution of the Tertiary Rupelian Clay. The cooling effect is strongest where this clay-rich aquitard is thinnest or missing, thus facilitating deep-reaching forced convective flow. The differences between the purely conductive and coupled models highlight the need for investigations of the complex interrelation of flow- and thermal fields to properly predict temperatures in sedimentary systems.


SALT KARST AND COLLAPSE STRUCTURES IN THE ANADARKO BASIN OF OKLAHOMA AND TEXAS, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Johnson, K. S.

Permian bedded salt is widespread in the Anadarko Basin of western Oklahoma and the Texas Panhandle, where partial or total dissolution of the shallowest salt in some areas has resulted in subsidence and/or collapse of overlying strata. Groundwater has locally dissolved these salts at depths of 10–250 m. The distribution (presence or absence) of salt-bearing units, typically 80–150 m thick, is confirmed by interpretation of geophysical logs of many petroleum tests and a few scattered cores. Salt dissolution by ground water is referred to as “salt karst.”Chaotic structures, collapse features, breccia pipes, and other evidence of disturbed bedding are present in Permian, Cretaceous, and Tertiary strata that overly areas of salt karst. The dip of Permian and post-Permian strata in the region normally is less than one degree, mainly towards the axis of the Anadarko Basin. Where strata locally dip in various directions at angles of 5–25 degrees or more, and underlying salt units show clear evidence of dissolution, these chaotic dips must result (mostly, if not totally) from subsidence and collapse into underlying salt-dissolution cavities.Gypsum karst and resultant collapse of overlying strata have been proposed in many parts of the Anadarko Basin. However, the gypsum beds typically are only 1–6 m thick and more than 100 m deep, and cannot contribute to disruption of outcropping strata—except where they are within 10–20 m of the surface.Typical areas of disturbed bedding comprise several hectares, or more, with outcrops of moderately dipping strata—as though large blocks of rock have foundered and subsided into large underground cavities. Other examples of disturbed bedding are small-diameter breccia pipes, or chimneys, that extend vertically up from salt-karst cavities, through several hundred meters of overlying strata. The best evidence of these chimneys are collapsed blocks of Cretaceous strata, chaotically dropped some 50 m, or more, that are now juxtaposed against various Permian formations on the north flank of the Anadarko Basin. Any study of surface or shallow-subsurface geology in the Anadarko Basin must consider the influence of subsurface salt karst on the structure and distribution of overlying rocks


GYPSUM KARST CAUSES RELOCATION OF PROPOSED CEDAR RIDGE DAM, THROCKMORTON COUNTY, TEXAS, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Johnson K. S. , Wilkerson J. M.

Cedar Ridge Dam and Reservoir will be built to supply water for the city of Abilene, Texas. The original damsite (CR) was to be located on Clear Fork of Brazos River in Throckmorton County, but initial coring of the damsite encountered unsuspected gypsum beds in the Permian-age Jagger Bend/Valera Formation. Gypsum is a highly soluble rock that typically contains karst features, and its presence in a dam foundation or impoundment area could allow water to escape from the reservoir. A decision was made to look at potential sites farther upstream (to the southwest), where west-dipping gypsum beds would be deeper underground and karst problems would be minimized or eliminated.The first phase of the relocation was a comprehensive field study of Clear Fork Valley, upstream of the original damsite, to identify gypsum outcrops; gypsum was exposed at only one location, just above damsite CR. The second phase of the study was examination of nearly 100 petroleum-test geophysical logs to identify, correlate, and map the subsurface gypsum and associated rock layers upstream of the original damsite. The gypsiferous sequence is 30–45 m thick, and consists of 8 gypsum beds, mostly 1–3 m thick, interbedded with red-brown and gray shale units 1–10 m thick. Gypsum beds comprise 25–30% of the gypsiferous sequence. Gypsum beds dip uniformly to the west at about 7 m/km (about 0.4 degrees), and thus the uppermost gypsum is at least 23 m beneath the newly proposed damsite (A), about 8 km to the southwest.Subsequent coring and other studies of the new damsite A confirm that gypsum beds are 23 m beneath the newly proposed dam. There is no evidence of solution channels or other karst features beneath this site, and thus there is little likelihood of water loss from the reservoir at the new site due to gypsum karst.


GEOPHYSICAL INVESTIGATIONS OF THE EDWARDS-TRINITY AQUIFER SYSTEM AT MULTIPLE SCALES: INTERPRETING AIRBORNE AND DIRECT-CURRENT RESISTIVITY IN KARST, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Gary M. O. , Rucker D. F. , Smith B. D. , Smith D. V. , Befus K.

Electrical and electromagnetic geophysical characterization is a proven tool for delineating obscured subterranean karstic features, such as caves, sinkholes, and solution enlarged fissures. Geophysical characterizations allow a wide range of deployment scales; airborne methods can accommodate a regional view on the order of kilometers, and ground-based methods can follow up with focused data on the order of meters. A helicopter frequency domain electro-magnetic (HFDEM) survey and ground-based direct-current electrical resistivity imaging (DC-ERI) geophysical studies at the Camp Bullis Military Training Site (Camp Bullis) in central Texas have been used to characterize permeability properties of the Edwards and Trinity Aquifers in the area. Results of three separate investigations identified zones of high density karst features and characterized specific karstic voids, including caves. In 2003, the USGS completed an HFDEM survey of Camp Bullis and nearby areas to map and image subsurface features related to the groundwater resources. The survey refined locations of mapped and previously unmapped faults and characterized the heterogeneity of the subsurface electrical signature. Karst mapping at Camp Bullis identified over 1500 features, and high density zones of features correspond with areas of high resistivity from the HEM data. DC-ERI surveys at several locations were used to infer and characterize known and hypothesized karst features. Site 8 suggests an inferred fault and 195dissolution feature. Two other sites were surveyed near major caves that directly recharge the Trinity Aquifer (indirectly to Edwards Aquifer) along Cibolo Creek. Integration of multi-scale geophysical datasets could be used to augment aquifer-wide recharge characterization and quantification.


EVAPORITE KARST IN THE PERMIAN BASIN REGION OF WEST TEXAS AND SOUTHEASTERN NEW MEXICO: THE HUMAN IMPACT , 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Land, Lewis

A significant minority of sinkholes in the greater Permian Basin region of west Texas and southeastern New Mexico are of human origin. These anthropogenic sinkholes are often associated with historic oil field activity, or with solution mining of Permian salt beds in the shallow subsurface. The well-known Wink Sinks in Winkler Co., Texas formed in 1980 and 2002 within the giant Hendrick oil field. The Wink Sinks were probably the result of subsurface dissolution of salt caused by fresh water leakage in improperly cased abandoned oil wells. In 2008 two catastrophic sinkhole events occurred a few months apart in northern Eddy Co., New Mexico, and a third formed a few months later in 2009 near Denver City, Texas. All three sinkholes were the result of solution mining operations for brine production from Upper Permian salt beds. The Eddy Co. sinkholes formed within the giant Empire oil and gas field, several kilometers from populated areas. In the aftermath of these events, another brine well operation was identified within the city limits of Carlsbad, New Mexico as having a similar geologic setting and pumping history. That well has been abandoned and geotechnical monitoring of the site has been continuous since 2008. Although there is no indication of imminent collapse, geophysical surveys have identified a substantial void in Permian salt beds beneath the brine well extending north and south beneath residential areas, a major highway intersection, a railroad, and an irrigation canal


Environmental controls on organic matter production and transport across surface-subsurface and geochemical boundaries in the Edwards aquifer, Texas, USA, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Hutchins Benjamin T. , Schwartz Benjamin F. , Engel Annette S.

Karst aquifer phreatic zones are energy limited habitats supported by organic matter (OM) flow across physical and geochemical boundaries. Photosynthetic OM enters the Edwards Aquifer of Central Texas via streams sinking along its northeastern border. The southeastern boundary is marked by a rapid transition between oxygenated freshwaters and anoxic saline waters where OM is likely produced by chemolithoautotrophic microbes. Spatial and temporal heterogeneity in OM composition at these boundaries was investigated using isotopic and geochemical analyses. δ13C values for stream fine particulate OM (FPOM) (−33.34‰ to −11.47‰) decreased during regional drought between fall 2010 and spring 2012 (p<0.001), and were positively related to FPOM C:N ratios (r2 =0.47, p<0.001), possibly due to an increasing contribution of periphyton. Along the freshwater-saline water interface (FwSwI), δ 13CFPOM values (−7.23‰ to −58.18‰) correlated to δ13C values for dissolved inorganic carbon (δ13C DIC) (−0.55‰ to −7.91‰) (r2 =0.33, p=0.005) and were depleted relative to δ13C DIC values by 28.44‰, similar to fractionation values attributed to chemolithoautotrophic carbon fixation pathways using DIC as the substrate. δ13CFPOM values also became enriched through time (p<0.001), and δ13C DIC values (r2 =0.43, p<0.001) and δ13CFPOM values (r2 =0.35, p=0.004) at FwSwI sites increased with distance along the southwest-northeast flowpath of the aquifer. Spatial variability in FwSwI δ13C DIC values is likely due to variable sources of acidity driving carbonate dissolution, and the temporal relationship is explained by changes to recharge and aquifer level that affected transport of chemolithoautotrophic OM across the FwSwI.


Using hydrogeochemical and ecohydrologic responses to understand epikarst process in semi-arid systems, Edwards plateau, Texas, USA, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Schwartz Benjamin F. , Schwinning Susanne, Gerrard Brett, Kukowski Kelly R. , Stinson Chasity L. , Dammeyer Heather C.

The epikarst is a permeable boundary between surface and subsurface environments and can be conceptualized as the vadose critical zone of epigenic karst systems which have not developed under insoluble cover. From a hydrologic perspective, this boundary is often thought of as being permeable in one direction only (down), but connectivity between the flow paths of water through the epikarst and the root systems of woody plants means that water moves both up and down across the epikarst. However, the dynamics of these flows are complex and highly dependent on variability in the spatial structure of the epikarst, vegetation characteristics, as well as temporal variability in precipitation and evaporative demand. Here we summarize insights gained from working at several sites on the Edwards Plateau of Central Texas, combining isotopic, hydrogeochemical, and ecophysiological methodologies. 1) Dense woodland vegetation at sites with thin to absent soils (0-30 cm) is in part supported by water uptake from the epikarst. 2) However, tree transpiration typically becomes water-limited in dry summers, suggesting that the plant-available fraction of stored water in the epikarst depletes quickly, even when sustained cave drip rates indicate that water is still present in the epikarst. 3) Flow paths for water that feeds cave drips become rapidly disconnected from the evaporation zone of the epikarst and out of reach for plant roots. 4) Deep infiltration and recharge does not occur in these systems without heavy or continuous precipitation that exceeds some threshold value. Thresholds are strongly correlated with antecedent potential evapotranspiration and rainfall, suggesting control by the moisture status of the epikarst evapotranspiration zone. The epikarst and unsaturated zone in this region can be conceptualized as a variably saturated system with storage in fractures, matrix porosity, and in shallow perched aquifers, most of which is inaccessible to the root systems of trees, although woody vegetation may control recharge thresholds.


Biospeleogenesis, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943

Microorganisms have shaped the world around us, yet their role in karst processes and speleogenesis remains poorly understood. Biospeleogenesis is the formation of subsurface cavities and caves through the activities of microorganisms, by either respiratory (redox) or metabolic chemistries. In carrying out energy acquisition and the metabolic processes of growth, microorganisms change the local geochemistry of the environment. Such activities can dramatically accelerate speleogenesis and even lead to cave formation in geochemical environments that would otherwise not be conducive to dissolution. The aim of this chapter is to help the reader understand the importance of microbial activity in geochemistry and how such activity can lead to the formation and morphology of caves. The chapter then describes the role that microorganisms are known to have in speleogenesis (carbonic and sulfuric acid biospeleogenesis), hints that such activity may be occurring in newly described cave systems (iron biospeleogenesis), and a potential role in other cave systems (quartzite biospeleogenesis). It is hoped that the reader will gain an understanding of what motivates microorganisms to dramatically change their environment, understand the potential geochemical conditions where such activity could occur, and allow the informed geologist to make predictive statements as to the potential of, and for, biospeleogenesis


SPELEOGENESIS BY THE SULFIDIC SPRINGS AT NORTHERN SIERRA DE CHIAPAS, MEXICO, BASED ON THEIR WATER CHEMISTRY, 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Rosaleslagarde L. , Boston P. J.

Conspicuous brackish sulfidic springs have been described at the northern Sierra the Chiapas, Mexico. These springs are produced by a mixture between regional and local groundwater flow paths. The regional groundwater has an average Total Dissolved Ions of 3081 mg/L so it has a brackish composition. This brackish water is saturated with respect to calcite and dolomite but undersaturated with respect to gypsum, anhydrite and halite. The mass balance and the discharge rate are used to quantify the mass and volume of minerals that are dissolved by the brackish spring water following Appelo and Postma (1993). This quantification will allow comparing the various speleogenetic mechanisms in the area. This is considering the composition of the spring water is relatively constant over time, as it is suggested by periodic measurements at the Cueva de Villa Luz springs during the last 10 years.
Sulfur isotopes in the water are consistent with anhydrite dissolution as the main source of the sulfate to the brackish spring water. Thus, the average 6 mol/L of sulfate in the brackish springs are produced by dissolution of 6 mol of anhydrite after subtracting the sulfate that could result from evapotranspiration of rainwater. Each liter of brackish water dissolved an average of 882 mg of anhydrite, which are equivalent to dissolving 0.36 cm3 of this mineral considering a density of 2.981 g/cm3. Additionally, using the average brackish water discharge rate of 144 L/s, an average of 57 g of anhydrite are being dissolved each second per every liter of brackish water. This is a minimal value because some of the sulfate in the water is used by sulfate-reducing bacteria in the subsurface to produce the hydrogen sulfide in the spring water. The anhydrite subject to dissolution is found interbedded in the Cretaceous carbonates, either from the subsurface at 4,000 m below sea level to the carbonate outcrops.
Similarly, we can calculate the volume of halite that is being dissolved by the brackish springs, considering chloride is a conservative element and subtracting the chloride concentration from the rainwater from that of the spring water following Appelo & Postma (1993). The 22 mol/L of chloride in the brackish water can result from dissolution in the subsurface of 22 moles or 1.3 g of halite per liter of brackish water. This mass of halite dissolved is equal to 0.59 cm3 considering a density of 2.168 g/cm3. Alternatively, 118 g of halite are dissolved per second per each liter of brackish water if we use the average discharge rate of 144 L/s.
Even when the brackish springs are oversaturated with respect to calcite and dolomite, their dissolution is still possible due to the common ion-effect of calcium after anhydrite dissolution and by mixing of waters with different compositions. A range of 10 to 80 % of brackish water from the regional aquifers mixes with fresh water from the local aquifer based on their water chemistry. Additionally, sulfuric acid speleogenesis occurs due to the oxidation of hydrogen sulfide to sulfuric acid.
Finally, the increase in the chloride concentration of the fresh water springs with respect to the concentration in rainwater was used to estimate that from the 4000 mm/y of annual precipitation, only 4%, 158 to 182 mm/y, recharge the aquifers. This low percentage is slightly higher than the 3.3% recharge in marls, marly limestone, silts and clays (Sanz et al., 2011), probably because of the relatively small area of carbonate outcrops over the entire region and the lack of recharge in altitudes higher than 1500 m above sea level.
Sulfuric acid is the most obvious speleogenetic mechanism occurring in the caves of the northern Sierra de Chiapas, Mexico due to the high hydrogen sulfide concentration in the spring water. In addition, the location of the springs at a zone of regional and local discharge where waters from different composition converge and mix, and the amount of mixing calculated suggests mixing is also an important speleogenetic mechanism. However, the depth and the time constrains at which these two hypogenic mechanisms occur is still unknown. The relatively low rainwater recharge rate suggests epigenesis is limited. Most likely, the porosity created by dissolution of anhydrite and halite in the subsurface is occluded by the precipitation of calcite. Chemical modeling and petrography will help to elucidate the order of the reactions occurring in the subsurface.


Occurrence of diagenetic alunites within karst cavity infill of the Dammam Formation, Ahmadi, Kuwait: an indicator of hydrocarbon gas seeps, 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Khalaf F. I. , Abdullah F. A.

Alunite minerals occur as white powdery lumps and laminated coloured deposits within cavity and solution channel infill of the palaeokarst zone of the Upper Eocene Dammam Formation. This formation is exposed in a quarry located on the Al Ahmadi ridge within the Greater Burgan oil field in southern Kuwait. Field occurrences and sedimentary structures of the alunite deposits were described. Collected samples were petrographically described, and their mineralogy and geochemistry were determined using X-ray diffraction and X-ray fluorescence, respectively. Microfabrics were investigated using SEM, revealing that they are primarily composed of fibrous alunogen (hydrous aluminium sulphate) and pseudo-cubical K-alunite (hydrous potassium aluminium sulphate). Their mode of occurrence suggests a hypogenetic origin, where sulphide gases associated with hydrocarbon gases reacted with an Al-rich solution leached from clay minerals and feldspars of the cavity-fill muddy sand sediments. The hydrocarbon gases may have seeped from subsurface petroliferous formations within the Greater Burgan oil field along vertical fractures. This study suggests that these acidic seeps may have played a role in the development of the palaeokarst zone of the Dammam Formation


A new species of Duvalius from world’s deepest cave (Coleoptera: Carabidae), 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Reboleira Ana Sofia P. S. , Ortuño V. M.

The new hypogean ground beetle, Duvalius abyssimus n. sp., from Krubera-Voronja, world’s deepest cave (Arabika massif, Western Caucasus) is described and illustrated. Diagnostic morphological characters of the imago, male and female genitalia are provided. Its relations with other Duvalius Delarouzée species from the Western Caucasus geographic area are discussed. An updated overview of the biocoenosis of its peculiar habitat is made.

 

 

Sinkholes, pit craters, and small calderas: Analog models of depletion-induced collapse analyzed by computed X-ray microtomography, 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943

Volumetric depletion of a subsurface body commonly results in the collapse of overburden and the formation of enclosed topographic depressions. Such depressions are termed sinkholes in karst terrains and pit craters or collapse calderas in volcanic terrains. This paper reports the first use of computed X-ray microtomography (?CT) to image analog models of small-scale (~< 2 km diameter), high-cohesion, overburden collapse induced by depletion of a near-cylindrical (“stock-like”) body. Time-lapse radiography enabled quantitative monitoring of the evolution of collapse structure, velocity, and volume. Moreover, ?CT scanning enabled non-destructive visualization of the final collapse volumes and fault geometries in three dimensions. The results illustrate two end-member scenarios: (1) near-continuous collapse into the depleting body; and (2) near-instantaneous collapse into a subsurface cavity formed above the depleting body. Even within near-continuously collapsing columns, subsidence rates vary spatially and temporally, with incremental accelerations. The highest subsidence rates occur before and immediately after a surface depression is formed. In both scenarios, the collapsing overburden column undergoes a marked volumetric expansion, such that the volume of subsurface depletion substantially exceeds that of the resulting topographic depression. In the karst context, this effect is termed “bulking”, and our results indicate that it may occur not only at the onset of collapse but also during progressive subsidence. In the volcanic context, bulking of magma reservoir overburden rock may at least partially explain why the volume of magma erupted commonly exceeds that of the surface depression.


Results 241 to 255 of 264
You probably didn't submit anything to search for