Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That macropore is a pore with dimensions such that capillary forces become less important during flow [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for feedback (Keyword) returned 36 results for the whole karstbase:
Showing 31 to 36 of 36
Hypogene Speleogenesis, 2013, Klimchouk, A. B.

Recognition of the wide occurrence, significance, and specific characteristics of hypogene speleogenesis during last twodecades signifies a major paradigm shift in karst science, previously overwhelmingly dominated by epigene concepts and models. Hypogene karst is one of the fundamental categories of karst, at least of equal importance with more familiar epigenic karst. Hypogene and epigenic karst systems are regularly associated with different types, patterns, and segments off low systems, which are characterized by distinct hydrokinetic, chemical, and thermal conditions. Hypogene speleogenesis is the formation of solution-enlarged permeability structures by water that recharges thecavernous zone from below, independent of recharge from the overlying or immediately adjacent surface. It develops mainly in leaky confined conditions, although it may continue through unconfined ones. Hydraulic communication along cross-formational flow paths, across lithological boundaries, different porosity systems, and flow regimes allows deeper ground waters in regional or intermediate flow systems to interact with shallower and more local systems, permittinga variety of dissolution mechanisms to operate. A specific hydrogeologic mechanism acting in hypogenic transverse speleogenesis (restricted input/output) suppresses the positive flow-dissolution feedback and speleogenetic competition seen in the epigenic development. Hypogenic caves occur in different soluble rocks in a wide range of geological and tectonic settings, basinal throughorogenic. Overall patterns of cave systems are strongly guided by the spatial distribution of the initial (prespeleogenetic) permeability features and hydrostratigraphic barriers and interfaces within the soluble and adjacent units, by the mode of water input to, and output from, cave-forming zones and by the overall recharge–discharge configuration in the multiple aquifer system. Because of their transverse nature, hypogene caves have a clustered distribution in plan view, althoughinitial clusters may merge laterally across considerable areas. Hypogene caves display remarkable similarity in their pattern sand mesomorphology, strongly suggesting that the type of flow system is the primary control. The rapidly evolving understanding of hypogene speleogenesis has broad implications for many applied fields such asprospecting and characterization of hydrocarbon reservoirs, groundwater management, geological engineering, and mineral resources industries


Cave aerosols: distribution and contribution to speleothem geochemistry, 2013, Dredge J. , Fairchild I. J. , Harrison R. M. , Fernandezcortes A. , Sanchezmoral S. , Jurado V. , Gunn J. , Smith A. , Spö, Tl Ch. , Mattey D. , Wynn P. M. , Grassineau N.

There is developing interest in cave aerosols due to the increasing awareness of their impacts on the cave environment and speleothem; this paper provides the first attempt to synthesize the issues. Processes of cave aerosol introduction, transport, deposition, distribution and incorporation are explored, and reviewed from existing literature. Key issues of specific aerosol processes of distribution and production as well as cave location and morphology effects are highlighted through the presentation of preliminary monitoring data. This study identifies the strong relationship between cave ventilation, cave aerosols and their consequent spatial distribution. The contribution of cave aerosol deposition to speleothem geochemistry is modelled and evaluated using a mass balance framework. As an example, speleothem trace element data from Obir Cave (Austria) are compared with aerosol inputs to evaluate their significance. The mass balance study demonstrates that generally, under normal continuous growth and environmental conditions aerosol deposition will be of only minor importance. However, it highlights specific scenarios in which aerosol contributions will be significant: speleothem hiatuses (or slow growth), high aerosol deposition, and secondary microbiological feedback.


Variances in airflows during different ventilation modes in a dynamic U-shaped cave, 2013, Faimon J. , Lang M.

Airflow dynamics were studied in Císařská Cave (Moravian Karst, Czech Republic) under different seasonal conditions. The dependence of airflows on the difference between external and cave temperatures is nonlinear and roughly obeys the Darcy-Weisbach equation. The upward airflows were found to be systematically higher than the downward airflows under comparable driving forces. The principle reason is nonlinearity between air temperature and air density. U-shaped cave geometry magnifies this effect by feedback between external temperature and airflow driving forces. Whereas this feedback is positive during the upward airflow ventilation mode, it is negative during the downward airflow mode. To discuss the behavior in detail, a simplified model based on balancing the masses of two equivalent air columns of different temperatures and densities is proposed. The results contribute to a better understanding of cave microclimate evolution, cave CO2 dynamics, and speleothem growth.


Do carbonate karst terrains affect the global carbon cycle?, 2013, Martin Jonathan B. , Brown Amy, Ezell John

Carbonate minerals comprise the largest reservoir of carbon in the earth’s lithosphere, but they are generally assumed to have no net impact on the global carbon cycle if rapid dissolution and precipitation reactions represent equal sources and sinks of atmospheric carbon. Observations of both terrestrial and marine carbonate systems indicate that carbonate minerals may simultaneously dissolve and precipitate within different portions of individual hydrologic systems. In all cases reported here, the dissolution and precipitation reactions are related to primary production, which fixes atmospheric CO2 as organic carbon, and the subsequent remineralization in watersheds of the organic carbon to dissolved CO2. Deposition of carbonate minerals in the ocean represents a flux of CO2 to the atmosphere. The dissolution of oceanic carbonate minerals can act either as a sink for atmospheric CO2 if dissolved by carbonic acid, or as a source of CO2 if dissolved through sulfide oxidation at the freshwater-saltwater boundary. Since dissolution and precipitation of carbonate minerals depend on ecological processes, changes in these processes due to shifts in rainfall patterns, earth surface temperatures, and sea level should also alter the potential magnitudes of sources and sinks for atmospheric CO2 from carbonate terrains, providing feedbacks to the global carbon cycle that differ from modern feedbacks.


Quaternary glacial cycles: Karst processes and the global CO2 budget, 2013, Larson Erik B. , Mylroie John E.

Extensive research has been conducted investigating the relationship between karst processes, carbonate deposition and the global carbon cycle. However, little work has been done looking into the relationship between glaciations, subsequent sea level changes, and aerially exposed land masses in relation to karstic processes and the global carbon budget. During glaciations sea-level exposed the world’s carbonate platforms. with the sub-aerial exposure of the platforms, karst processes can occur, and the dissolution of carbonate material can commence, resulting in the drawdown of CO2 from the atmosphere as HCO3−. Furthermore, the material on the platform surfaces is primarily aragonite which is more readily soluble than calcite allowing karst processes to occur more quickly. During glaciations arctic carbonates and some of the temperate carbonates are blanketed in ice, effectively removing those areas from karst processes. Given the higher solubility of aragonite, and the extent of carbonate platforms exposed during glaciations, this dissolution balances the CO2 no longer taken up by karst processes at higher latitudes that were covered during the last glacial maximum The balance is within 0.001 GtC / yr, using soil pCO2 (0.005 GtC / yr assuming atmospheric pCO2) which is a difference of <1% of the total amount of atmospheric CO2 removed in a year by karst processes. Denudation was calculated using the maximum potential dissolution formulas of Gombert (2002). On a year to year basis the net amount of atmospheric carbon removed through karstic processes is equivalent between the last glacial maximum and the present day, however, the earth has spent more time in a glacial configuration during the quaternary, which suggests that there is a net drawdown of atmospheric carbon during glaciations from karst processes, which may serve as a feedback to prolong glacial episodes. This research has significance for understanding the global carbon budget during the quaternary.


MODELING SPELEOGENESIS USING COMPUTATIONAL FLUID DYNAMICS: POTENTIAL APPLICATIONS TO HYPOGENE CAVES, 2014, Covington M. , Myre J.

Numerical models of speleogenesis typically simulate flow and dissolution within single fractures or networks of fractures. Such models employ fracture flow and pipe flow equations to determine flow rates and only consider average velocities within each fracture segment. Such approximations make large scale simulations of speleogenesis tractable. However, they do not allow simulation of the formation and evolution of micro- or meso-scale cave passage morphologies. Such morphologies are frequently studied within a field setting and utilized for the interpretation of the speleogenetic processes that formed the cave. One classic example is the formation of scallops in cave streams with turbulent flow. Scallops are used to interpret past flow velocities and directions. However, a recent analysis of the theory of limestone dissolution in turbulent flow conditions suggests a discrepancy between theory and reality concerning the formation of limestone scallops (Covington, in review). Similarly, the only attempt to numerically simulate flute formation in limestone found that the flute forms were not stable (Hammer et al., 2011). Motivated by these puzzles, we are developing a computational fluid dynamics (CFD) framework for the simulation of the evolution of dissolution morphologies.

While this project was initially conceived to better understand dissolution in turbulent flow, the tools being developed are particu­larly well-suited to examine a variety of other questions related to cave morphology on the micro- and meso-scales. There has been significant recent discussion about the interpretation of features that are diagnostic of hypogenic or transverse speleogenesis, such as the morphological suite of rising flow defined by Klimchouk (2007). Other authors have suggested that such forms can be found in a variety of settings where confined flow is not present (Mylroie and Mylroie, 2009; Palmer, 2011). We propose that simulation of such forms using a CFD speleogenesis code will allow a more complete understanding of the connections between process and form, because in such simulations the processes occurring are well-known, well-defined, and also can be adjusted within controlled numeri­cal experiments, where relevant parameters and boundary conditions are systematically varied.

The CFD framework we are developing is based on the Lattice Boltzman method (Chen and Doolen, 1998), which is a popular tech­nique for modeling the mechanics of complex fluids, including fluid mixtures, reactive transport, porous media flow, and complex and evolving domain geometries. With this framework it is straightforward to simulate many of the processes occurring in hypogene settings, including complex fluid flows, dissolution, solute and heat transport, and buoyancy-driven flow. Furthermore, this modeling framework allows these processes to be coupled so that their interactions and feedbacks can be explored. With the suite of capabili­ties provided by this framework, we can begin to numerically simulate the processes occurring in hypogene speleogenesis, including the driving mechanisms and the role of buoyancy-driven flow and its relationship with the morphological suite of rising flow. In the spirit of a workshop, this work is presented as in-progress, in the hopes that it will stimulate discussion on potential applications of the model being developed.


Results 31 to 36 of 36
You probably didn't submit anything to search for