Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That relict karst is a karst area that exists within the contemporary system, but has been removed from the situation in which they developed, usually as a result of baselevel changes.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for turkey (Keyword) returned 97 results for the whole karstbase:
Showing 31 to 45 of 97
One-dimensional springflow model for time variant recharge, 1997, Bhar Ak, Mishra Gc,
The linear mathematical model for springflow suggested by Bear (1979) can simulate springflow for an initial instantaneous recharge. A springflow model has been developed, using the Bear model and Duhamel's approach, which can simulate springflow for time variant recharge. The suggested model can also be used to compute the time variant recharge to the springflow domain from a given springflow time series. The inverse problem, which contains linear recharge terms and nonlinear depletion terms, has been solved using the Newton-Raphson method for solving a set of nonlinear equations. The model has been tested to compute recharge for Kirkgoz spring, a first magnitude karst spring in the Mediterranean region of Turkey. The estimated annual recharge computed by the model on a monthly basis compared well with the annual recharge which had been estimated (Korkmaz, 1990) using the Bear model

Travertines are terrestrial, fresh water carbonate deposits formed by karstic springs and associated streams which are saturated with respect to calcite. Field observations form recently travertine depositing arstic springs in Aladağlar, Eastern Taurids ? Turkey indicate that the deposition process is accelerated considerably by the physical and biochemical contribution of algae which are mostly belong to classes of Cyanophyceae (blue-green algae) Chlorophyceae (diatoms), Eugleno-phyceae and Xhantophyceae. Algae conributes physically to the deposition of travertine by means of trapping of inorganically formed calcite micro-crystals by algal filaments and mucilagenous secretions and by providing proper nucleation sites for calcite precipitation. Biochemical activity of algae also forces the aquatic system to deposit travertine due to the photosynthetic removal of free carbondioxide from the solution. Field observations indicate that the rate of physical and chemical contribution to the deposition depends strongly on the hydraullic conditions. Physical and biochemical roles becomes important in high and low /velocity/energy streams, respectively. The effect of algal association over the travertine deposition can be observed apparently especially in streams where the ratio of algal mass to the rate of stream flow is substantially high. Since the climatic conditions (air temperature and insolation) have strong influence upon the abundance of algae, the rate of travertine deposited by algal contribution decreasing during winter months when algal population decreases. Similarly , the biochemical contribution shows a diurnal pattern with a maximum during a mid day because of the higher uptake of carbondioxide via photosynthesis.

Karst hydrogeology of the Kas-Kalkan springs along the Mediterranean coast of Turkey, 1998, Elhatip H, G_ N,

Formation and features of Ballica Cave, Pazar, Tokat, Turkey, 1999, Canik Baki, Celik Mehmet, Pasvanoglu S. , Novinpour E. A.

High-resolution sequence stratigraphic correlation in the Upper Jurassic (Kimmeridgian)-Upper Cretaceous (Cenomanian) peritidal carbonate deposits (Western Taurides, Turkey), 1999, Altiner D, Yilmaz Io, Ozgul N, Akcar N, Bayazitoglu M, Gaziulusoy Ze,
Upper Jurassic (Kimmeridgian)- Upper Cretaceous (Cenomanian) inner platform carbonates in the Western Taurides are composed of metre-scale upward-shallowing cyclic deposits (parasequences) and important karstic surfaces capping some of the cycles. Peritidal cycles (shallow subtidal facies capped by tidal-Aat laminites or fenestrate limestones) are regressive- and transgressive-prone (upward-deepening followed by upward-shallowing facies trends). Subtidal cycles are of two types and indicate incomplete shallowing. Submerged subtidal cycles are composed of deeper subtidal facies overlain by shallow subtidal facies. Exposed subtidal cycles consist of deeper subtidal facies overlain by shallow subtidal facies that are capped by features indicative of prolonged subaerial exposure. Subtidal facies occur characteristically in the Jurassic, while peritidal cycles are typical for the Lower Cretaceous of the region. Within the foraminiferal and dasyclad algal biostratigraphic framework, four karst breccia levels are recognized as the boundaries of major second-order cycles, introduced for the first time in this study. These levels correspond to the Kimmeridgian-Portlandian boundary, mid-Early Valanginian, mid-Early Aptian and mid-Cenomanian and represent important sea level falls which affected the distribution of foraminiferal fauna and dasyclad flora of the Taurus carbonate platform. Within the Kimmeridgian-Cenomanian interval 26 third-order sequences (types and 2) are recognized. These sequences are the records of eustatic sea level fluctuations rather than the records of local tectonic events because the boundaries of the sequences representing 1-4 Ma intervals are correlative with global sea level falls. Third-order sequences and metre-scale cyclic deposits are the major units used for long-distance, high-resolution sequence stratigraphic correlation in the Western Taurides. Metre-scale cyclic deposits (parasequences) in the Cretaceous show genetical stacking patterns within third-order sequences and correspond to fourth-order sequences representing 100-200 ka. These cycles are possibly the E2 signal (126 ka) of the orbital eccentricity cycles of the Milankovitch band. The slight deviation of values, calculated for parasequences. from the mean value of eccentricity cycles can be explained by the currently imprecise geochronology established in the Cretaceous and missed sea level oscillations when the platform lay above fluctuating sea level. Copyright (C) 1999 John Wiley & Sons, Ltd

Review of groundwater pollution and protection in karst areas, 1999, Kacaroglu F. ,
Karst groundwater (the water in a karst aquifer) is a major water resource in many regions of some countries. Water requirements for most of the settlements in the karstic regions are supplied from karst aquifers. Karst environments are also used for the disposal of liquid and solid domestic agricultural, and industrial wastes, which result in karst groundwater pollution. Karst aquifers have specific hydraulic and hydrogeologic characteristics that render them highly vulnerable to pollution from human activities. Karst groundwater becomes polluted more easily and in shorter time periods than water in non-karstic aquifers. Thus, protection measures are required to preserve the quality and quantity of karst groundwater that specifically consider the vulnerability of the karst environment. In order to preserve karst groundwater, the geological, hydrological and hydrogeological characteristics of the karst area must be investigated and information on polluting activities and sources must be collected. Then, a comprehensive protection and control system must be developed consisting of the following six components: (1) develop and implement a groundwater monitoring system, (2) establish critical protection zones, (3) develop proper land use strategies, (4) determine the reasonable development capacity of the karst aquifer, (5) control and eliminate when necessary sources of pollution, (6) increase public awareness of the value and vulnerability of karst aquifers

Karst landforms on the eastern slopes of Davras Dagi (western Taurus): karren, sinkholes and uvalas, 1999, Dayan E, Bilgin A, Hancer M,
A characteristic of the study area is the low frequency of gully and rill karren. By length, width and depth they are not comparable with the same type of karren in the alpine karst, as they have attained only insignificant dimensions. This difference in size cannot primarily be attributed to differences of annual precipitation, but rather to the fact that they are only 2-3000 years old. Their formation started with anthropogenic forest destruction and concomitant soil stripping. As gully and rill karren depend on bare rock surfaces for their formation, they cannot have formed before that time. Joint-oriented and cavernous karren, in conrast, are widely spread in the study area. As the formation of these two types of karren is related to the existence of joints, their frequency is explained by severe fracturing of the limestone during recent tectonic movements. Although cavernous karren may also form on bare rock surfaces, Lest conditions for their development exist underneath a soil cover. As this no longer exists, the formation of cavernous karren has become much reduced in the historical era. Sinkholes are frequent in the planation surfaces of Mid- to Upper Miocene age and are of Pliocene and Pleistocene age. The uvalas are also not very old, as many of them contain terra rossa

Karst hydrogeology of Kusluk-Dilmetas karst springs, Van-Eastern Turkey, 2001, Ozler H. M. ,
Permian marbles and recrystallised limestone nappes outcrop in the Artos Mountain range and comprise an aquifer with a small storage reservoir. Carbonate units are underlain by the impervious Yuksekova ophiolites. Between the marble and ophiolites, there is a transition zone by the northward thrusting, which varies between 500-1,000 m thickness. Fissures and fractures systems are well-developed in this transition zone because of the effects of tectonic movement, and extensive karstification has resulted in a high infiltration although its storage capacity is low. Because of the impermeable ophiolites at the base, groundwater discharges as springs flowing from the plane of the thrust faults. Numerous karst springs (48 springs) issue from this fissured and fractured zone, which are characterised by small discharge rates, a long residence time, and well-regulated spring flows. In addition, a selective enlargement is observed from west to east, which is greatly effected by strike-slip faults. All these springs are mostly fed by snowmelt during 6 months of the year

Hydrochemistry of the Cesme geothermal area in western Turkey, 2001, Gemici U, Filiz S,
Hydrochemical characterization of thermal waters discharged from springs and wells in the Cesme geothermal area show that there are two groups. One is of thermal waters from a lower aquifer composed of Triassic karst limestones, which are the main potential reservoir of the area. They are of Na-Cl type and between 37 and 62degreesC and have total dissolved solids (TDS) with around 35 000 mg/l. The other group are thermal waters derived from an upper aquifer formed by Neogene terrestrial sediments. These have lower discharge temperatures (37-40degreesC) and lower TDS values due to their having mixed with local groundwater before emerging. The isotopic and chemical data shows that the initial aqueous solution is a mixture of modern seawater and meteoric water in various proportions. Enrichment in delta(18)O and deltaD values and tritium contents (8 1 TU) of thermal waters reflect a rapid circulation and the contribution of modern seawater. The thermal waters are undersaturated with respect to gypsum but oversaturated, or around equilibrium, with respect to dolomite and calcite. Several chemical geothermometry techniques applied to Cesme geothermal waters gave estimated reservoir temperatures of around 85-100degreesC. (C) 2001 Elsevier Science B.V. All rights reserved

Gypsum karst near Sivas, Turkey, 2002, Waltham A. C.

Pamukkale (Hirapolis) : un site de travertins hydrothermaux exceptionnel de Turquie, 2002, Nicod, Jean
Pamukkale (Hierapolis): An outstanding site of hydrothermal travertines in Turkey - These travertines result from the deposit of carbonates near the hydrothermal springs, on the main active fault zone on the northern border of the Denizli basin (W Turkey). Their high mineralised water, rich of CO2 of geothermal origin, accumulate limestone in the fissure ridges and in the cascades on the front of the old travertines balcony, building up in it flowstone and rimstone dams. This site is particularly important as much for the archaeological and palaeoenvironmental researches as the palaeoseismic and neotectonics regional data.

A rare landform: Yerkopru travertine bridges in the Taurids Karst Range, Turkey, 2002, Bayari Cs,
Two examples of travertine bridges are observed at 8 to 15 in above stream level in the Lower Zamanti Basin, Eastern Taurids, Turkey. Yerkopu-1 and Yerkopru-2 bridges are currently being deposited front cool karstic groundwaters with log P-CO2 > 10(-2) atm. The surface area and the total volume of travertine in Yerkopru-1 bridge are 4350 m(2) and 40 000 m(3), whereas the values for Yerkopru-2 are 2250 m(2) and 20000 m(3), respectively. The interplay of hydrogeological Structure, local topography, calcite-saturated hanging springs, algal activity and rapid downcutting in the streambed appear to have led to the formation of travertine bridges. Aeration through cascades and algal uptake causes efficient carbon dioxide evasion that enhances travertine formation. Algal curtains aid lateral development of travertine rims across the stream. Model calculations based on a hypothetical deposit in the form of a half-pyramid implied that lateral development should have occurred from both banks of the stream in the Yerkopru-1 bridge, whereas one-sided growth has been sufficient for Yerkopru-2. The height difference between travertine springs and the main strearn appears to be a result of Pleistocene glaciation during which karstic base-level lowering was either stopped or slowed down while downcutting in the main strearn continued. Copyright (C) 2002 John Wiley Sons, Ltd

Genesis of the Dogankuzu and Mortas Bauxite Deposits, Taurides, Turkey: Separation of Al, Fe, and Mn and Implications for Passive Margin Metallogeny, 2002, Ozturk Huseyin, Hein James R. , Hanilci Nurullah,
The Taurides region of Turkey is host to a number of important bauxite, Al-rich laterite, and Mn deposits. The most important bauxite deposits, Do[g]ankuzu and Morta[s], are karst-related, unconformity-type deposits in Upper Cretaceous limestone. The bottom contact of the bauxite ore is undulatory, and bauxite fills depressions and sinkholes in the footwall limestone, whereas its top surface is concordant with the hanging-wall limestone. The thickness of the bauxite varies from 1 to 40 m and consists of bohmite, hematite, pyrite, marcasite, anatase, diaspore, gypsum, kaolinite, and smectite. The strata-bound, sulfide- and sulfate-bearing, low-grade lower part of the bauxite ore bed contains pyrite pseudomorphs after hematite and is deep red in outcrop owing to supergene oxidation. The lower part of the bauxite body contains local intercalations of calcareous conglomerate that formed in fault-controlled depressions and sinkholes. Bauxite ore is overlain by fine-grained Fe sulfide-bearing and calcareous claystone and argillaceous limestone, which are in turn overlain by massive, compact limestone of Santonian age. That 50-m-thick limestone is in turn overlain by well-bedded bioclastic limestone of Campanian or Maastrichtian age, rich with rudist fossils. Fracture fillings in the bauxite orebody are up to 1 m thick and consist of bluish-gray-green pyrite and marcasite (20%) with bohmite, diaspore, and anatase. These sulfide veins crosscut and offset the strata-bound sulfide zones. Sulfur for the sulfides was derived from the bacterial reduction of seawater sulfate, and Fe was derived from alteration of oxides in the bauxite. Iron sulfides do not occur within either the immediately underlying or overlying limestone. The platform limestone and shale that host the bauxite deposits formed at a passive margin of the Tethys Ocean. Extensive vegetation developed on land as the result of a humid climate, thereby creating thick and acidic soils and enhancing the transport of large amounts of organic matter to the ocean. Alteration of the organic matter provided CO2 that contributed to formation of a relatively 12C-rich marine footwall limestone. Relative sea-level fall resulted from strike-slip faulting associated with closure of the ocean and local uplift of the passive margin. That uplift resulted in karstification and bauxite formation in topographic lows, as represented by the Do[g]ankuzu and Morta[s] deposits. During stage 1 of bauxite formation, Al, Fe, Mn, and Ti were mobilized from deeply weathered aluminosilicate parent rock under acidic conditions and accumulated as hydroxides at the limestone surface owing to an increase in pH. During stage 2, Al, Fe, and Ti oxides and clays from the incipient bauxite (bauxitic soil) were transported as detrital phases and accumulated in the fault-controlled depressions and sinkholes. During stage 3, the bauxitic material was concentrated by repeated desilicification, which resulted in the transport of Si and Mn to the ocean through a well-developed karst drainage system. The transported Mn was deposited in offshore muds as Mn carbonates. The sulfides also formed in stage 3 during early diagenesis. Transgression into the foreland basin resulted from shortening of the ocean basin and nappe emplacement during the latest Cretaceous. During that time bioclastic limestone was deposited on the nappe ramp, which overlapped bauxite accumulation

Gypsum karst, Sivas, Turkey, 2002, G_ N,

Gypsum karst, Sivas, Turkey., 2002, Gunay G.

Results 31 to 45 of 97
You probably didn't submit anything to search for