Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That feeding tube is in karst terrane, a more or less straight and waterbearing underground gallery of regular crosssection. synonyms: (french.) tunnel; (german.) stromungsrohr, karstgerinne; (greek.) karstikos ypoyios agogos; (spanish.) tubo; (turkish.) akarsu mecrasi; (yugoslavian.) vodonosni rov. see also stream tube.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for values (Keyword) returned 401 results for the whole karstbase:
Showing 391 to 401 of 401
Groundwater geochemistry observations in littoral caves of Mallorca (western Mediterranean): implications for deposition of phreatic overgrowths on speleothems., 2014, Boop L. M. , Onac B. P. , Wynn J. G. , Fornós J. J. , Rodríguezhomar M. , Merino A.

Phreatic overgrowths on speleothems (POS) precipitate at the air-water interface in the littoral caves of Mallorca, Spain. Mainly composed of calcite, aragonite POS are also observed in specific locations. To characterize the geochemical environment of the brackish upper water column, water samples and salinity values were collected from water profiles (0-2.9 m) in April 2012 and March 2013 near aragonite POS in Cova des Pas de Vallgornera and calcite POS in Coves del Drac (hereafter, Vallgornera and Drac). Degassing of CO2 from the water was evidenced by the existence of lower dissolved inorganic carbon (DIC) concentration and enriched δ13CDIC values in a thin surface layer (the uppermost 0.4 m), which was observed in both profiles from Drac. This process is facilitated by the efficient exchange of cave air with the atmosphere, creating a CO2 partial pressure (pCO2) disparity between the cave water and air, resulting in the precipitation of calcite POS as CO2 degasses from the water. The degassed upper layer was not observed in either profile from Vallgornera, suggesting that less efficient cave ventilation restricts outgassing of CO2, which also results in accumulation of CO2 in the cave atmosphere. The presence of an existing uncorroded POS horizon, as well as higher concentrations and large amplitude fluctuations of cave air pCO2, may indicate that aragonite POS deposition is currently episodic in Vallgornera. Ion concentration data from monthly water samples collected in each cave between October 2012 and March 2013 indicate higher Mg:Ca, Sr:Ca, Ba:Ca and Sr:Mg ratios in Vallgornera. Salinity alone does not appear to be a viable proxy for ions that may promote aragonite precipitation or inhibit calcite precipitation. Instead, these ions may be contributed by more intense bedrock weathering or deep groundwater flow.

Karst piracy: A mechanism for integrating the Colorado River across the Kaibab uplift, Grand Canyon, Arizona, USA, 2014, Hill C. A. , Polyak V. J.

Age, isotopic, and detrital zircon data on the Hualapai Limestone Member and Muddy Creek Formation (western United States) constrain the time of the first arrival of the Colorado River on the west side of the Grand Canyon to ca. 6–5 Ma. We propose a karst piracy mechanism, along with a 17–6 Ma western paleo–Grand Canyon, as an alternative explanation for how the Colorado River became integrated across the Kaibab uplift and for the progressive upsection decrease in δ18O and 87Sr/86Sr values of the Hualapai Limestone Member. An earlier Laramide paleocanyon, along which this western paleocanyon followed, can also perhaps explain why no clastic delta exists in the Grand Wash trough.

Karst piracy is a type of stream piracy where a subterranean drainage connection is made under a topographic divide. The process of karst piracy proceeds through five main stages: (1) establishment of a gradient across a topographic divide due to headward erosion into the low side of the divide, (2) leakage in soluble rock along the steepest gradient, (3) expansion of the leakage route into a cave passage that is able to carry a significant volume of water under the divide, (4) stoping and collapse of rock above the underground river, eventually forming a narrow gorge, and (5) widening of the gorge into a canyon. A karst piracy model is proposed here for the Kaibab uplift area that takes into account the structure and hydrology of that area. Other examples of karst piracy operating around the world support our proposition for integrating the Colorado River across the Kaibab uplift in the Grand Canyon.

A conservation status index, as an auxiliary tool for the management of cave environments., 2014,

The conservation of the Speleological Heritage involves bioecological, geomorphological and anthropogenic studies, both from inside the caves and from the external environments that surround them. This study presents a method to rank caves according to their priority for conservation and restoration. Nine caves were evaluated: indicators related to the environmental impacts and the vulnerability status presented by those caves (intrinsic features) and the values scored in a ‘Cave Conservation Index’ (CCI) were established. We also used a rapid assessment protocol to measure cave vulnerability for prioritization of conservation/restoration actions (RAP-cr) comparing natural cavities with the same lithology, due to “strictu sensu” peculiarities. Based on the protocols applied in caves of the municipality of Laranjeiras, Sergipe, Northeastern Brazil, we concluded that the present method attended to the needs for the classification of the caves into categories of conservation/restoration status, using little time and financial effort, through rapid diagnostics that facilitate the comparisons. In this perspective, the CCI can be used to indicate areas that should be protected and caves that should be prioritized to have initiated activities of conservation and restoration.

Sulphuric acid speleogenesis and landscape evolution: Montecchio cave, Albegna river valley (Southern Tuscany, Italy), 2014, Piccini L. : Dewaele J. , Galli E. , Polyak V. J. , Bernasconi S. M. , Asmerom Y.

Montecchio cave (Grosseto province, Tuscany, Italy) opens at 320 m asl, in a small outcrop of Jurassic limestone (Calcare Massiccio Fm.), close to the Albegna river. This area is characterised by the presence of several thermal springs and the outcropping of travertine deposits at different altitudes. The Montecchio cave, with passage length development of over 1700 m, is characterised by the presence of several sub-horizontal passages and many medium- and small-scale morphologies indicative of sulphuric acid speleogenesis (SAS). The thermal aquifer is intercepted at a depth of about 100 m below the entrance: the water temperature exceeds 30 °C and sulphate content is over 1300mg l−1. The cave hosts large gypsumdeposits from40 to 100mbelowthe entrance that are by-products of the reaction between sulphuric acid and the carbonate host rock. The lower part of the cave hosts over 1 m thick calcite cave raft deposits, which are evidence of long-standing, probably thermal, water in an evaporative environment related to significant air currents. Sulphur isotopes of gypsumhave negative δ34S values (from−28.3 to−24.2‰), typical of SAS. Calcite cave rafts and speleogenetic gypsumboth yield young U/Th ages varying from68.5 ka to 2 ka BP, indicating a rapid phase of dewatering followed by gypsumprecipitation in aerate environment. This fastwater table lowering is related to a rapid incision of the nearby Albegna river, andwas followed by a 20–30mfluctuation of the thermalwater table, as recorded in the calcite raft deposits and gypsum crusts.

The fate of CO2 derived from thermochemical sulfate reduction (TSR) and effect of TSR on carbonate porosity and permeability, Sichuan Basin, China, 2015, Hao Fang, Zhang Xuefeng, Wang Cunwu, Li Pingping, Guo Tonglou, Zou Huayao, Zhu Yangming, Liu Jianzhang, Cai Zhongxian

This article discusses the role ofmethane in thermochemical sulfate reduction (TSR), the fate of TSR-derived CO2 and the effect of TSR on reservoir porosity and permeability, and the causes of the anomalously high porosity and permeability in the Lower Triassic soured carbonate gas reservoirs in the northeast Sichuan Basin, southwest China. The Lower Triassic carbonate reservoirs were buried to a depth of about 7000 m and experienced maximum temperatures up to 220 °C before having been uplifted to the present-day depths of 4800 to 5500 m, but they still possess porosities up to 28.9% and permeabilities up to 3360 md. The present-day dry gas reservoirs evolved from a paleo-oil accumulation and experienced varying degrees of TSR alteration as evidenced from the abundant sulfur-rich solid bitumens and varying H2S and CO2 concentrations. TSR occurred mainly within the oil and condensate/wet gas windows, with liquid hydrocarbons and wet hydrocarbon gases acting as the dominant reducing agents responsible for sulfate reduction, sulfur-rich solid bitumen and H2S generation, and calcite precipitation. Methane-dominated TSR was a rather late event and had played a less significant role in altering the reservoirs. Intensive H2S and CO2 generation during TSR resulted in calcite cementation rather than carbonate dissolution, which implies that the amount of water generated during TSR was volumetrically insignificant. 13C-depleted CO2 derived from hydrocarbon oxidation preferentially reacted with Ca2+ to form isotopically light calcite cements, and the remaining CO2 re-equilibrated with the 13C-enriched water–rock systems with its δ13C rapidly approaching the values for the host rocks, which accounted for the observed heavy and relatively constant CO2 δ13C values. The carbonate reservoirs suffered from differential porosity loss by TSR-involved solid bitumen generation and TSR-induced calcite and pyrite precipitation. Intensive TSR significantly reduced the porosity and permeability of the intervals expected to have relatively high sulfate contents (the evaporative-platform dolostones and the platform-margin shoal dolostones immediately underlying the evaporative facies). Early oil charge and limited intensity of TSR alteration, together with very low phyllosilicate content and early dolomitization, accounted for the preservation of anomalously high porosities in the reservoirs above the paleo-oil/water contact. A closed system seems to have played a special role in preserving the high porosity in the gas zone reservoirs below the paleo-oil/water contact. The closed system, which is unfavorable for deep burial carbonate dissolution and secondary porosity generation, was favorable for the preservation of early-formed porosity in deeply buried carbonates. Especially sucrosic and vuggy dolostones have a high potential to preserve such porosity.

The hydrogeology of high-mountain carbonate areas: an example of some Alpine systems in southern Piedmont (Italy), 2015,

The hydrogeological characteristics of some springs supplied by high-mountain carbonate rock aquifers, located in the south of Piedmont, in Italy, are presented in this work. The aquifers have different geological-structural conditions, including both deep and superficial karstification. Their catchment areas are located in a typical Alpine context at a high altitude of about 2000 m. These aquifers are ideal representations of the different hydrogeological situations that can be encountered in the high-altitude carbonate aquifers of the Mediterranean basin. It is first shown how the high-altitude zones present typical situations, in particular related to the climate, which control the infiltration processes to a great extent. Snowfall accumulates on the ground from November to April, often reaching remarkable thicknesses. The snow usually begins to melt in spring and continues to feed the aquifer for several months. This type of recharge is characterized by continuous daily variations caused by the typical thermal excursions. The hourly values are somewhat modest, but snowmelt lasts for a long time, beginning in the lower sectors and ending, after various months, in the higher areas. Abundant rainfall also occurs in the same period, and this contributes further to the aquifer supply. In the summer period, there is very little rainfall, but frequent storms. In autumn, abundant rainfall occurs and there are there fore short but relevant recharge events. It has been shown how the trend of the yearly flow of the high mountain springs is influenced to a great extent by the snowmelt processes and autumn rainfall. It has also been shown, by means of the annual hydrographs of the flow and the electric conductivity of the spring water, how the different examined aquifers are characterized by very different measured value trends, according to the characteristics of the aquifer.


Sulphuric acid speleogenesis and landscape evolution: Montecchio cave, Albegna river valley (Southern Tuscany, Italy), 2015, Piccini Leonardo, De Waele Jo, Galli Ermanno, Polyak Victor J. , Bernasconi Stefano M. Asmerom Yemane

Montecchio cave (Grosseto province, Tuscany, Italy) opens at 320 m asl, in a small outcrop of Jurassic limestone (Calcare Massiccio Fm.), close to the Albegna river. This area is characterised by the presence of several thermal springs and the outcropping of travertine deposits at different altitudes. The Montecchio cave, with passage length development of over 1700 m, is characterised by the presence of several sub-horizontal passages and many medium- and small-scale morphologies indicative of sulphuric acid speleogenesis (SAS). The thermal aquifer is intercepted at a depth of about 100 m below the entrance: the water temperature exceeds 30 °C and sulphate content is over 1300 mg l−1. The cave hosts large gypsumdeposits from40 to 100mbelowthe entrance that are by-products of the reaction between sulphuric acid and the carbonate host rock. The lower part of the cave hosts over 1 m thick calcite cave raft deposits, which are evidence of long-standing, probably thermal, water in an evaporative environment related to significant air currents.

Sulphur isotopes of gypsum have negative δ34S values (from−28.3 to−24.2‰), typical of SAS. Calcite cave rafts and speleogenetic gypsumboth yield young U/Th ages varying from68.5 ka to 2 ka BP, indicating a rapid phase of dewatering followed by gypsum precipitation in aerate environment. This fastwater table lowering is related to a rapid incision of the nearby Albegna river, and was followed by a 20–30 m fluctuation of the thermal water table, as recorded in the calcite raft deposits and gypsum crusts.

Depth and timing of calcite spar and “spar cave” genesis: Implications for landscape evolution studies, 2015,

Calcite spar (crystals >1 cm in diameter) are common in limestone and dolostone terrains. In the Guadalupe Mountains, New Mexico and west Texas, calcite spar is abundant and lines small geode-like caves. Determining the depth and timing of formation of these large scalenohedral calcite crystals is critical in linking the growth of spar with landscape evolution. In this study, we show that large euhedral calcite crystals precipitate deep in the phreatic zone (400–800 m) in these small geode-like caves (spar caves), and we propose both are the result of properties of supercritical CO2 at that depth. U-Pb dating of spar crystals shows that they formed primarily between 36 and 28 Ma. The 87Sr/86Sr values of the euhedral calcite spar show that the spar has a signifi cantly higher 87Sr/86Sr (0.710–0.716) than the host Permian limestone (0.706–0.709). This indicates the spar formed from waters that are mixed with, or formed entirely from, a source other than the surrounding bedrock aquifer, and this is consistent with hypogene speleogenesis at signifi cant depth. In addition, we conducted highly precise measurements of the variation in nonradiogenic isotopes of strontium, 88Sr/86Sr, expressed as 88Sr, the variation of which has previously been shown to depend on temperature of precipitation. Our preliminary 88Sr results from the spar calcite are consistent with formation at 50–70 °C. Our fi rst U-Pb results show that the spar was precipitated during the beginning of Basin and Range tectonism in a late Eocene to early Oligocene episode, which was coeval with two major magmatic periods at 36–33 Ma and 32–28 Ma. A novel speleogenetic process that includes both the dissolution of the spar caves and precipitation of the spar by the same speleogenetic event is proposed and supports the formation of the spar at 400–800 m depth, where the transition from supercritical to subcritical CO2 drives both dissolution of limestone during the main speleogenetic event and precipitation of calcite at the terminal phase of speleogenesis. We suggest that CO2 is derived from contemporaneous igneous activity. This proposed model suggests that calcite spar can be used for reconstruction of landscape evolution

Earliest evidence of pollution by heavy metals in archaeological sites, 2015, Guadalupe Monge, Francisco J. Jimenezespejo, Antonio Garcíaalix, Francisca Martínezruiz, Nadine Mattielli, Clive Finlayson, Naohiko Ohkouchi, Miguel Cortés Sánchez, Jose María Bermúdez De Castro, Ruth Blasco, Jordi Rosell, José Carrión, Joaquí

Homo species were exposed to a new biogeochemical environment when they began to occupy caves. Here we report the first evidence of palaeopollution through geochemical analyses of heavy metals in four renowned archaeological caves of the Iberian Peninsula spanning the last million years of human evolution. Heavy metal contents reached high values due to natural (guano deposition) and anthropogenic factors (e.g. combustion) in restricted cave environments. The earliest anthropogenic pollution evidence is related to Neanderthal hearths from Gorham's Cave (Gibraltar), being one of the first milestones in the so-called “Anthropocene”. According to its heavy metal concentration, these sediments meet the present-day standards of “contaminated soil”. Together with the former, the Gibraltar Vanguard Cave, shows Zn and Cu pollution ubiquitous across highly anthropic levels pointing to these elements as potential proxies for human activities. Pb concentrations in Magdalenian and Bronze age levels at El Pirulejo site can be similarly interpreted. Despite these high pollution levels, the contaminated soils might not have posed a major threat to Homo populations. Altogether, the data presented here indicate a long-term exposure of Homo to these elements, via fires, fumes and their ashes, which could have played certain role in environmental-pollution tolerance, a hitherto neglected influence.

Chemistry and Karst, 2015, White, William B.

The processes of initiation and development of characteris­tic surface karst landforms and underground caves are nearly all chemical processes. This paper reviews the advances in understanding of karst chemistry over the past 60 years. The equilibrium chemistry of carbonate and sulfate dissolution and deposition is well established with accurate values for the necessary constants. The equations for bulk kinetics are known well enough for accurate modeling of speleogenetic processes but much is being learned about atomic scale mechanisms. The chemistry of karst waters, expressed as parameters such as total dissolved carbonates, saturation index, and equilibrium carbon dioxide pressure are useful tools for probing the internal char­acteristics of karst aquifers. Continuous records of chemical parameters (chemographs) taken from springs and other karst waters mapped onto discharge hydrographs reveal details of the internal flow system. The chemistry of speleothem deposi­tion is well understood at the level of bulk processes but much has been learned of the surface chemistry on an atomic scale by use of the atomic force microscope. Least well understood is the chemistry of hypogenetic karst. The main chemical reac­tions are known but equilibrium modeling could be improved and reaction kinetics are largely unknown.

A Three-dimensional Statistical Model of Karst Flow Conduits, 2016, Boudinet, P

It already exists several three-dimensional models dealing with groundwater circulation in karst systems. However, few of them are able either to give a large scale prediction of the repartition of the flow conduits or to make a comparison with real field data. Therefore, our objective is to develop a three-dimensional model about the early formation of karst flow conduits and to compare it with actual field data. This geometric and statistical model is based on percolation and random walks. It is computational and can be run on a personal computer. We examine the influence of fissures (joints and bedding planes) of variable permeability and orientations on the development or early flow conduits. The results presented here correspond to computations up to 2015. Because of long runtimes, we focused on some particular stereotypical situations, corresponding to some particular values of the parameters. Regarding the conduit patterns, the opening and directions of fissures have the same qualitative influence in the model than in actual systems. Two other predictions in good accordance with real karst are that flow conduits can either develop close to the water table or deeper, depending on the distribution of permeable fissures; and that, when viewed in the horizontal plane, conduits don't always develop close to the straight line between inlet and outlet. From a quantitative point of view, in the case of weak dips, our model predicts a realistic relationship between the stratal dip, the length of the system and the averaged depth of the conduits. Eventually, we show that the repartition of conduits depends not only on obvious geometrical parameters such as directions and sizes, but also also on other quantities difficult to measure such as the probability of finding open fissures. The lack of such data doesn't enable, at the present time, a whole comparison between model and reality.

Results 391 to 401 of 401
You probably didn't submit anything to search for