Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That covered karren is any karren that is covered by soil. draining water is oversaturated with respect to co2 so that corrosion is extensive [3]. see also wave karren; root karren; cavernous karren.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for cave morphology (Keyword) returned 64 results for the whole karstbase:
Showing 61 to 64 of 64
Quaternary faulting in the Tatra Mountains, evidence from cave morphology and fault-slip analysis, 2015, Szczygieł Jacek

Tectonically deformed cave passages in the Tatra Mts (Central Western Carpathians) indicate some fault activity during the Quaternary. Displacements occur in the youngest passages of the caves indicating (based on previous U-series dating of speleothems) an Eemian or younger age for those faults, and so one tectonic stage. On the basis of stress analysis and geomorphological observations, two different mechanisms are proposed as responsible for the development of these displacements. The first mechanism concerns faults that are located above the valley bottom and at a short distance from the surface, with fault planes oriented sub-parallel to the slopes. The radial, horizontal extension and vertical σ1 which is identical with gravity, indicate that these faults are the result of gravity sliding probably caused by relaxation after incision of valleys, and not directly from tectonic activity. The second mechanism is tilting of the Tatra Mts. The faults operated under WNW-ESE oriented extension with σ1 plunging steeply toward the west. Such a stress field led to normal dip-slip or oblique-slip displacements. The faults are located under the valley bottom and/or opposite or oblique to the slopes. The process involved the pre-existing weakest planes in the rock complex: (i) in massive limestone mostly faults and fractures, (ii) in thin-bedded limestone mostly inter-bedding planes. Thin-bedded limestones dipping steeply to the south are of particular interest. Tilting toward the N caused the hanging walls to move under the massif and not toward the valley, proving that the cause of these movements was tectonic activity and not gravity.


Hydrothermal speleogenesis in carbonates and metasomatic silicites induced by subvolcanic intrusions: a case study from the Štiavnické vrchy Mountains, Slovakia, 2015,

Several caves of hydrothermal origin in crystalline limestones and metasomatic silicites were investigated in the central zone of the Štiavnica stratovolcano, Štiavnické vrchy Mountains, central Slovakia. Evidence of hydrothermal origin includes irregular spherical cave morphology sculptured by ascending thermal water, occurrence of large calcite crystals and hydrothermal alteration of host rocks, including hydrothermal clays. The early phases of speleogenesis in the crystalline limestone near Sklené Teplice Spa were caused by post-magmatic dissolution linked either to the emplacement of subvolcanic granodiorite intrusions during Late Badenian time or to the spatially associated Late Sarmatian epithermal system. Speleogenesis in metasomatic silicites in the Šobov area is related to hydrothermal processes associated with the pre-caldera stage of the Štiavnica stratovolcano in Late Badenian. Both localities are remarkable examples of hydrothermal speleogenesis associated with Miocene volcanic and magmatic activity in the Western Carpathians


Sulfuric acid speleogenesis (SAS) close to the water table: Examples from southern France, Austria, and Sicily, 2015,

Caves formed by rising sulfuric waters have been described from all over the world in a wide variety of climate  settings, from arid regions to mid-latitude and alpine areas. H2S is generally formed at depth by reduction of  sulfates in the presence of hydrocarbons and is transported in solution through the deep aquifers. In tectonically  disturbed areas major fractures eventually allow these H2S-bearing fluids to rise to the surface where oxidation  processes can become active producing sulfuric acid. This extremely strong acid reacts with the carbonate  bedrock creating caves, some of which are among the largest and most spectacular in the world. Production of  sulfuric acid mostly occurs at or close to the water table but also in subaerial conditions in moisture films and  droplets in the cave environment. These caves are generated at or immediately above the water table, where  condensation–corrosion processes are dominant, creating a set of characteristic meso- and micromorphologies.  Due to their close connection to the base level, these caves can also precisely record past hydrological and  geomorphological settings. Certain authigenic cave minerals, produced during the sulfuric acid speleogenesis  (SAS) phase, allow determination of the exact timing of speleogenesis. This paper deals with the morphological,  geochemical and mineralogical description of four very typical sulfuric acid water table caves in Europe: the  Grotte du Chat in the southern French Alps, the Acqua Fitusa Cave in Sicily (Italy), and the Bad Deutsch Altenburg  and Kraushöhle caves in Austria


Hypogene speleogenesis in dolomite host rock by CO2-rich fluids, Kozak Cave (southern Austria), 2015,

A growing number of studies suggest that cave formation by deep-seated groundwater  (hypogene) is a more common process of subsurface water-rock interaction than previously  thought. Fossil hypogene caves are identified by a characteristic suite of morphological  features on different spatial scales. In addition, mineral deposits (speleothems) may provide  clues about the chemical composition of the paleowater, which range from CO2-rich to  sulfuric acid-bearing waters. This is one of the first studies to examine hypogene cave  formation in dolomite. Kozak Cave is a fossil cave near the Periadriatic Lineament, an area  known for its abundance of CO2-rich springs. The cave displays a number of macro-, mesoand  micromorphological elements found also in other hypogene caves hosted in limestone,  marble or gypsum, including cupolas, cusps, Laughöhle-type chambers and notches. The  existance of cupolas and cusps suggests a thermal gradient capable of sustaining free  convection during a first phase of speleogenesis, while triangular cross sections (Laughöhle  morphology) indicate subsequent density-driven convection close to the paleowater table Notches mark the final emergence of the cave due to continued rock uplift and valley  incision. Very narrow shafts near the end of the cave may be part of the initial feeder system,  but an epigene (vadose) overprint cannot be ruled out. Vadose speleothems indicate that the  phreatic phase ended at least about half a million years ago. Drill cores show no evidence of  carbon or oxygen isotope alteration of the wall rock. This is in contrast to similar studies in  limestone caves, and highlights the need for further wall-rock studies of caves hosted in  limestone and dolomite


Results 61 to 64 of 64
You probably didn't submit anything to search for