Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That calcite is 1. the commoner, more stable, mineral form of calcium carbonate, caco3. it is the dominant component of all limestones and, due to its dissolution and reprecipitation by natural waters at normal temperatures, it is also the dominant mineral of chemical cave deposits including stalactites and stalagmites. it is white or colorless when pure but may be stained, most commonly to yellows and browns, by included impurities such as iron oxides. its uninterrupted growth in a pool may allow development of good crystals, shaped as elongate scalenohedral pyramids of trigonal habit. growth in stalactites and stalagmites is either in masses of fine parallel or radiating needles, or in a mosaic of larger rhombic crystals, easily identified by their well developed cleavage surfaces. calcite is also the dominant vein mineral in limestones [9]. 2. a mineral composed of calcium carbonate (caco3) like aragonite but differing in crystal form; the principal constituent of limestone and other speleothems [10].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for devonian (Keyword) returned 70 results for the whole karstbase:
Showing 61 to 70 of 70
Caves and speleogenesis at Blomstrandsøya, Kongsfjord, W. Spitsbergen, 2011, Lauritzen, S. E.

Blomstrandsøya, at Kongsfjord (780 57’N), Spitsbergen, is within the high arctic, a completely permafrozen zone. The bedrock consists of Paleozoic marbles and has yielded a surprising amount of karst features. Early phases of hydrothermal, possibly Caledonian, speleogenesis and subsequent Devonian karstification with redbed deposits is well documented. 62 active seacaves, and more than 30 relict karst caves were found in the coastal cliffs and in escarpment faces around the island. All caves have very limited extent; they are either quite short, like most of the active sea caves, or they are soon choked by frozen sediments and ground ice after a few meters. The deepest penetration was some 34 m into the surface cliff. Many of the relict caves are scalloped and display well-defined paragenetic wall and ceiling half-tubes, implying that they are indeed conduits, leading further into the rock mass, beyond their present permafrozen terminations. Most of the speleogenetic volume of the relict caves is ascribed to sub-glacial conditions during stadials, when the site was covered beneath thick ice sheets. In many cases, the present caves were formed by reactivation of pre-existing paleokarst voids.  Due to the present intense gelifraction and erosion in the littoral zone, and the relatively constant sea level during the past 9.5 kyr, most of the volume of the sea caves can be explained by processes acting during the Holocene.


Geochemical/isotopic evolution of Pb-Zn deposits in the Central and Eastern Taurides, Turkey, 2011, Hanilci N. , Ozturk H.

The Central and Eastern Taurides contain numerous carbonate-hosted Pb-Zn deposits, mainly in Devonian and Permian dolomitized reefal-stramatolitic limestones, and in massive Jurassic limestones. We present and compare new fluid inclusion and isotopic data from these ore deposits, and propose for the first time a Mississippi Valley-type (MVT) mode of origin for them. Fluid inclusion studies reveal that the ore fluids were highly saline (13-26% NaCl equiv.), chloride-rich (CaCl2) brines, and have average homogenization temperatures of 112°C, 174.5°C, and 211°C for the Celal Dag, Delikkaya, and Ayrakl deposits, respectively. Furthermore, the ?34S values of carbonate-hosted Pb-Zn deposits in the Central and Eastern Taurides vary between -5.4‰ and +13.70‰. This indicates a possible source of sulphur from both organic compounds and crustal materials. In contrast, stable sulphur isotope data (average ?34S -0.15‰) for the Cadrkaya deposit, which is related to a late Eocene-Oligocene (?) granodioritic intrusion, indicates a magmatic source. The lead isotope ratios of galena for all investigated deposits are heterogeneous. In particular, with the exception of the Sucat district, all deposits in the Eastern (Delikkaya, Ayrakl, Denizovas, Cadrkaya) and Central (Katranbasi, Kucuksu) Taurides have high radiogenic lead isotope values (206Pb/204Pb between 19.058 and 18.622; 207Pb/204Pb between 16.058 and 15.568; and 208Pb/204Pb between 39.869 and 38.748), typical of the upper continental crust and orogenic belts. Fluid inclusion, stable sulphur, and radiogenic lead isotope studies indicate that carbonate-hosted metal deposits in the Eastern (except for the Cadrkaya deposit) and the Central Taurides are similar to MVT Pb-Zn deposits described elsewhere. The primary MVT deposits are associated with the Late Cretaceous-Palaeocene closure of the Tethyan Ocean, and formed during the transition from an extensional to a compressional regime. Palaeogene nappes that typically limit the exposure of ore bodies indicate a pre-Palaeocene age of ore formation. Host rock lithology, ore mineralogy, fluid inclusion, and sulphur + lead isotope data indicate that the metals were most probably leached from a crustal source such as clastic rocks or a crystalline massif, and transported by chloride-rich hydrothermal solutions to the site of deposition. Localization of the ore deposits on autochthonous basement highs indicates long-term basinal fluid migration, characteristic of MVT depositional processes. The primary MVT ores were oxidized in the Miocene, resulting in deposition of Zn-carbonate and Pb-sulphate-carbonate during karstification. The ores underwent multiple cycles of oxidation and, in places, were re-deposited to form clastic deposits. Modified deposits resemble the 'wall-rock replacement' and the 'residual and karst fill' of non-sulphide zinc deposits and are predominantly composed of smithsonite


CONDICIONANTS LITOLGICS I ESTRUCTURALS DEL CARST A LES ILLES BALEARS, 2011, Forns J. J. , Gelabert B.

The lithology and structural setting of the rocks which form the island of Mallorca are magnificent bases on which karstic phenomena develop. Almost every geological period is continually represented here, from the Carboniferous to the Pleistocene (only part of the Upper Cretaceous and Lower Paleogene being absent). The approximate thickness of the stratigraphic sequence is 3,000 m in which carbonate deposits (not only limestones but also dolomites) constitute the most important lithologies. The main structure consists of thrust sheets imbricated in a NW transport direction. Such deformation took place during the alpine orogeny. Furthermore, the existence of impervious materials from the Keuper at the base of the thrust sheets, added to the imbricate thrusts system structure, cause permeable zones to remain isolated by areas of impervious material. The development during the post-orogenic phase (Late Miocene) of a carbonate reef deposition, forms a large tabular slab where the phenomena related to coastal karst have its maximum expression. Menorca, can be divided into two very distinct parts. The northern half or Tramuntana, well structured, but dominated by the presence of siliceous material from the Devonian with a couple of large slabs of Mesozoic limestones and dolomites, quite different from Migjorn, in the south, where the Late Miocene calcarenites and calcisiltites clearly dominate. Eivissa can be assimilated to the same structure of the Tramuntana mountains of Mallorca, which are almost exclusively dominated by carbonate materials, particularly the dolomites, but the limestones from the middle Triassic and the marls (Cretaceous and lower Miocene) are very abundant. Formentera is dominated at both ends of the island by sea cliffs cut on Miocene reefal limestones joined by an isthmus where Pleistocene aeolian calcarenites outcrops.


Hydrogeology of the Gokpinar karst springs, Sivas, Turkey, 2012, Kacaroğ, Lu F.

Gökpınar karst springs are located 8 km to the south of the Gürün district centre, Sivas, Turkey. The springs have two main outlets (Gökpınar-1 and Gökpınar-2) and outflow from Jurassic-Cretaceous Yüceyurt formation (limestone). The total discharge of the springs ranges between 4.5 and 7.8 m3/s.The study area is formed of allocthonous and autocthonous lithological units whose ages range from Upper Devonian to Quaternary. These lithologies are mostly formed of limestones. Yüceyurt formation (limestone), from which Gökpınar karst springs outflow, constitute the main aquifer in the study area and is karstified. The unit has a well developed karst system comprising karren, dolines, ponors, underground channels and caves. The recession (discharge) analysis of the Gökpınar springs was carried out and the storage capacitiesand discharge (recession) coefficients of the Gökpınar-1 and Gökpınar-2 springs were calculated as 141×10^6 m3 and 98×10^6 m3, and 2.71×10^-3 day-1 and 2.98×10^-3 day-1, respectively. The storage capacities and discharge (recession) coefficients obtained suggest that the karst aquifer (Yüceyurt limestone) has large storage capacity, and drainage occurs very slow. The major cations in the study area waters are Ca2+ and Mg2+, and anion is HCO3-. The waters are calcium bicarbonate type. Some of the water chemistry parameters of the Gökpınar springs range as follows: T=10.8–11.1°C, pH=7.65–7.95,EC=270–310 μS/cm, TDS=170–200 mg/L, Ca2+=40.0–54.0 mg/L,Mg2+=4.5–10.0 mg/L, HCO3-=144.0–158.0 mg/L. Temperature, EC, TDS, and Ca2+ and HCO3- concentrations of the Gökpınar springs did not show significant variations during the study period.


Hydrogeology of the Gokpinar karst springs, Sivas, Turkey , 2012, Kaaroğ, Lu Fikret

Gökpınar karst springs are located 8 km to the south of the Gürün district centre, Sivas, Turkey. The springs have two main outlets (Gökpınar-1 and Gökpınar-2) and outflow from Jurassic-Cretaceous Yüceyurt formation (limestone). The total discharge of the springs ranges between 4.5 and 7.8 m3/s.The study area is formed of allocthonous and autocthonous lithological units whose ages range from Upper Devonian to Quaternary. These lithologies are mostly formed of limestones. Yüceyurt formation (limestone), from which Gökpınar karst springs outflow, constitute the main aquifer in the study area and is karstified. The unit has a well developed karst system comprising karren, dolines, ponors, underground channels and caves. The recession (discharge) analysis of the Gökpınar springs was carried out and the storage capacitiesand discharge (recession) coefficients of the Gökpınar-1 and Gökpınar-2 springs were calculated as 141×10^6 m3 and 98×10^6 m3, and 2.71×10^-3 day-1 and 2.98×10^-3 day-1, respectively. The storage capacities and discharge (recession) coefficients obtained suggest that the karst aquifer (Yüceyurt limestone) has large storage capacity, and drainage occurs very slow. The major cations in the study area waters are Ca2+ and Mg2+, and anion is HCO3-. The waters are calcium bicarbonate type. Some of the water chemistry parameters of the Gökpınar springs range as follows: T=10.8–11.1°C, pH=7.65–7.95,EC=270–310 μS/cm, TDS=170–200 mg/L, Ca2+=40.0–54.0 mg/L,Mg2+=4.5–10.0 mg/L, HCO3-=144.0–158.0 mg/L. Temperature, EC, TDS, and Ca2+ and HCO3- concentrations of the Gökpınar springs did not show significant variations during the study period.


The Grosmont: the worlds largest unconventional oil reservoir hosted in polyphase-polygenetic karst, 2013, Machel Hans G. , Borrero Mary Luz, Dembicki Eugene, Huebscher Harald4

The Upper Devonian Grosmont platform in Alberta, Canada, is the world’s largest heavy oil reservoir hosted in carbonates, with 400-500 billion barrels of IOIP at an average depth of about 250 – 400 m. Advanced thermal recovery technologies, such as SAGD and electrical in-situ retorting, much higher world market prices for oil and certain political pressures have led to a flurry of activity in the Grosmont since 2006.
The sedimentary stratigraphy of the Grosmont reservoir consists of six stacked car-bonate units interbedded with marls and some evaporites. The latter two originally acted as aquitards during diagenesis but are breached or missing in parts of the area today. Dolomitization by density-driven reflux was the first pervasive diagenetic pro-cess. A dense fracture network was created in three or four phases. Most fractures probably originated from collapse following subsurface salt dissolution and/or from Laramide tectonics far to the west, whereby pulsed crustal loading in the fold-and-thrust belt created a dynamic forebulge in the Grosmont region via multiple pulses of basin-wide crustal flexing, each followed by relaxation. The fracture network probably was reactivated and/or expanded by glacial loading and post-glacial isostatic rebound in the Pleistocene and Holocene, respectively.
The region experienced three or four prolonged periods of epigene karstification, alt-hough there is tangible evidence for only two of them in the Grosmont platform. The first of these episodes was a ‘warm epigene karstification’ during the Jurassic - Creta-ceous, and the second was/is a ‘cold epigene karstification’ that started sometime in the Cenozoic and is continuing to this day. In addition, there is circumstantial evidence for hypogene ‘karstification’ (= dissolution) throughout much of the geologic history of the Grosmont since the Late Devonian. Karstification was accompanied and/or by fol-lowed by extensive hydrocarbon biodegradation.


NA JAVORCE CAVE A NEW DISCOVERY IN THE BOHEMIAN KARST (CZECH REPUBLIC): UNIQUE EXAMPLE OF RELATIONSHIPS BETWEEN HYDROTHERMAL AND COMMON KARSTIFICATION, 2013, Dragoun J. Ž, á, K K. Vejlupek J. Filippi M. Novotný, J. Dobeš, P.

 

The Na Javorce Cave is located in the Bohemian Karst, Czech Republic, near the Karlštejn castle, about 25 km SW of Prague. The cave was discovered as a result of extensive exploration including cave digging and widely employed capping of narrow sections. Exploration in the cave has already lasted 20 years. The cave is fitted with several hundred meters of fixed and rope ladders and several small fixed bridges across intra-cave chasms. Access to the remote parts of the cave is difficult because of long narrow crawl passages and deep and narrow vertical sections. The Na Javorce Cave became the deepest cave discovered to date in Bohemia with the discovery of its deepest part containing a lake in 2010. The cave was formed in vertically dipping layers of Lower Devonian limestone; it is 1,723 m long and 129 m deep, of which 9 m is permanently flooded (data as of December 2012). The cave is polygenetic, with several clearly separable evolutionary stages. Cavities discovered to date were mostly formed along the tectonic structures of two main systems. One of these systems is represented by vertical faults of generally N-S strike, which are frequently accompanied by vein hydrothermal calcite with crystal cavities. The second fault system is represented by moderately inclined faults (dip 27 to 45°, dip direction to the W). Smaller tube-like passages of phreatic morphology connect the larger cavities developed along the two above-mentioned systems. The fluid inclusion data obtained for calcite developed along both fault systems in combination with C and O stable isotope studies indicate that the hydrothermal calcite was deposited from moderately saline fluids (0.5 to 8.7 wt. % NaCl equiv.) in the temperature range from 58 to 98 °C. The fluids were NaCl-type basinal fluids, probably derived from the deeper clastic horizons of the Barrandian sedimentary sequence. The age of the hydrothermal processes is unknown; geologically it is delimited by the Permian and Paleogene. The hydrothermal cavities are small compared to cavities formed during the later stages of karstification. The majority of the known cavities were probably formed by corrosion by floodwater derived from an adjacent river. This process was initiated during the Late Oligocene to Early Miocene, as was confirmed by typical assemblage of heavy minerals identical in the surface river sediments and in clastic cave sediments. The morphology of most cavities is phreatic or epiphreatic, with only local development of leveled roof sections (“Laugdecken”). The phreatic evolution of the cave is probably continuing into the present in its deepest permanently flooded part, which exhibits a water level close to that of the adjacent Berounka River. Nevertheless, the chemistry of the cave lake differs from that of the river water. The cave hosts all the usual types of cave decoration (including locally abundant erratics). The most interesting speleothem type is cryogenic cave carbonate, which was formed during freezing of water in relation to the presence of permafrost during the Glacial period. The occurrence of cryogenic cave carbonate here indicates that the permafrost of the Last Glacial period penetrated to a depth of at least 65 m below the surface.


Ascending speleogenesis in the Czech Republic and Slovakia , 2013, Bosák P. , Bella P.

Several examples of per ascensum (ascending) speleogenesis along deep faults (cf. also were recently described by Bella & Bosák (2012). The concept of ascending speleogenesis in confined or partly confined conditions connected with deep regional fault was proposed, for the first time on the territory of the past Czechoslovakia, by Bosák (1996, 1997) for the origin of the Koněpruské Caves and some other caves in the Koněprusy Devonian (central Bohemia, Czech Republic). Since that time, number of caves with similar speleogenesis has been studied in more of lesser detail. Most of them were originally described as products of phreatic, epiphreatic and vadose speleogenesis related to the evolution of local water courses, valley incision and river terrace systems usually during Middle to Late Pleistocene climatic changes; eventually with Plio-Quaternary climatic oscillations.


PERMIAN HYDROTHERMAL KARST IN KRAKÓW REGION (SOUTHERN POLAND) AND ITS PECULIAR INTERNAL SEDIMENTS, 2014, Gradziński M. , Lewandowska A. , Paszkowski M. , Duliński M. , Nawrocki J. , Żywiecki M.

The development of caves influenced by the deep circulation of water has received increasing interest for the last thirty years. Presently, hypogene caves have been recognized all around the world. Conversely, the ancient examples filled with sediments and representing palaeokarst forms are not so common.
The karst forms and their sediment fillings were encountered in the Dębnik Anticline (Kraków region, Southern Poland) composed of Middle Devonian to Mississippian carbonates. The development of karst slightly postdates the Permian (ca. 300 Ma) volcanic activity in the Kraków region. In this region major transcontinental strike and slip Hamburg-Kraków-Dobruja fault zone induced a series of minor, en echelon, extensional faults, which served as magma passages and guided karst conduits.
The karst forms in the Dębnik Anticline reach several to tens of meters in size. They are filled with: i) massive, subaqueous, coarse crystalline calcite spar; ii) crystalloclastic, bedded limestones; iii) jasper lenses; iv) kaolinitised tuffs. The sediments are characterized by red colouration caused by iron compounds.
Coarse crystalline calcite spar composes beds up to several dozen centimeters in thickness. They are laminated and comprise frutexites type structures. The calcites are interbedded with pinkish-red crystalloclastic limestones, which are built of detritic calcite crystals from silt size to a few millimeters across. Some of the crystals are of skeletal type. Crystalloclastic limestones are normally graded. Both calcite spar and crystalloclastic limestones underwent synsedimentary deformations, which resulted in brecciation and plastic deformations.
The above deposits fill karst forms up to a few metres in lateral extent. However, analogously filled enormously huge (up to around 100 m across) forms were recognized in the early 80s of the last century. Presently, they are completely exploited.
The karst forms were fragments of extensive circulation system. It was fed by waters of elevated temperature, rich in endogenic CO2, which is proved by fluid inclusion analysis and stable isotope investigation. The origin of this system was associated with volcanic activity. The roots of the system are represented by fissures filled with coarse crystalline, red and white calcites of onyx type, which are common in the Dębnik Anticline. Water issuing from this system on the surface caused precipitation of red travertines. These travertines are preserved only as clasts in the Lower Permian conglomerates deposited in the local tectonic depressions.
The study was financed by Ministry of Science and Higher Education project N307 022 31/1746.


Incipient vertical traction carpets within collapsed sinkhole fills, 2014,

Small vertically oriented traction carpets are reported from the collapsed sandy fills of 100 m deep Devonian limestone sinkholes underlying the Lower Cretaceous Athabasca oil sands deposit in north-eastern Alberta, Western Canada. Dissolution of 100 m of underlying halite salt beds caused cataclysmic collapse of the sinkhole floors and water saturated sinkhole sand fills to descend very rapidly. Turbulent currents flushed upper sinkhole fills of friable sandstone blocks and disaggregated sand and quartz pebble for tens of metres. Laminar deposits with inverse grading accumulated as many as six to eight curvilinear entrained pebble streaks, 10 to 30 cm long, vertically impinged against the sides of descending collapse blocks. These deposits were initiated as vertically oriented early stage traction carpets that interlocked fine sand grains and inversely graded overlying pebbles entrained below the dilute overlying turbulent flows. Vortexes that flushed these sinkhole fills and induced these depositional processes may have lasted only seconds before the very rapid descents abruptly halted. Some of the fabrics were suspended vertically in-place and preserved from unlocking and obliteration. These small fabrics provide insight into the instability and ephemeral character of the transition from strong gravity-driven grain falls to very early stages of traction carpet formation. These short-lived deposits of very thin sand layers resulted from sufficient incipient frictional freezing that grain interlocking overcame, however briefly, the strong gravity drives of the vertical falls that would have otherwise dispersed grains and obliterated any organized fabric patterns. Tenuous frictionally locked grains were also suspended at the centres of hyperbolic grain fall flows that briefly developed between turbulent flow eddies, some of which were fortuitously preserved. Some of these suspended grain locking zones passed downward onto the relatively more stable surfaces of the rapidly descending block surfaces. The morphogenesis of these early stage traction carpets differ from more fully developed deposits elsewhere because of their short-lived transport, dynamic instability and vertical orientation.


Results 61 to 70 of 70
You probably didn't submit anything to search for