MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_left.php on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That speleothem is 1. general term for all cave mineral deposits, embracing all stalactites, flowstone, flowers, etc. most are formed of calcite whose precipitation processes, related mainly to carbon dioxide levels in the water, are the direct reverse of the dissolution of limestone. climatic influences on dissolution processes ensure that speleothems are generally larger and more abundant in the caves of the wet tropics, which are typified by thick stalactites and massive stalagmites, in contrast to the straws and flowstones of alpine caves [9]. 2. general term for stalactites, stalagmites, moonmilk, helictites, and other secondary mineral deposits in caves and caverns [20]. 3. a secondary mineral deposit formed in caves, such as stalactite or stalagmite [10].synonyms: (french.) concretions cavernicoles; (german.) hohlenformation; (greek.) speleolithoma; (italian.) concrezione; (russian.) natecnye obrazovanija; (spanish.) concrecion (estalagmitica o estalactitica); (turkish.) magara olusugu; (yugoslavian.) sige. see also cave formation.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for sensitivity (Keyword) returned 71 results for the whole karstbase:
Showing 61 to 71 of 71
Modified DRASTIC assessment for intrinsic vulnerability mapping of karst aquifers: a case study , 2011,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Mimi Ziad A. , Mahmoud Nidal, Abu Madi Maher

Groundwater in karstic aquifers can be dangerously sensitive to contamination. In this paper, DRASTIC assessment was modified and applied, for the first time, to address the intrinsic vulnerability for karst aquifers. The theoretical weights of two of DRASTIC’s parameters (aquifer media and hydraulic conductivity) were modified through sensitivity analysis. Two tests of sensitivity analyses were carried out: the map removal and the single parameter sensitivity analyses. The modified assessment was applied for the karst aquifers underlying Ramallah District (Palestine) as a case study. The aquifer vulnerability map indicated that the case study area is under low, moderate and high vulnerability of groundwater to contamination. The vulnerability index can assist in the implementation of groundwater management strategies to prevent degradation of groundwater quality. The modified DRASTIC assessment has proven to be effective because it is relatively straightforward, use data that are commonly available or estimated and produces an end product that is easily interpreted.


Comparative application of two methods (COP and PaPRIKa) for groundwater vulnerability mapping in Mediterranean karst aquifers (France and Spain) , 2011,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Marin A. I. , Dorfliger N. , Andreo O.

A comparative test of two vulnerability mapping methods (COP and PaPRIKa) specifically dedicated to for karst aquifers was carried out on two Mediterranean carbonate aquifers. The vulnerability maps obtained for each aquifer present important differences. To identify and determine the origin of these differences, the results were statistically analyzed using sensitivity analysis, coefficients of determination and scatter graphs. In addition, the global vulnerability (Gv) parameter was used to measure the general vulnerability of the aquifer and to compare the results obtained. This statistical analysis led us to conclude that the main cause of differences between these two methods used to assess aquifer vulnerability lie in the relative importance of the parameters employed in calculating the vulnerability index. For the PaPRIKa method, the variable related to infiltration (slope and karst features) has the most influence, with less weight being assigned to the protective capacity of layers overlying the aquifer. For the COP method, the most influent variable is defined by the layers overlying the aquifer, together with infiltration characteristics, determined by the relative importance of different forms of infiltration in each aquifer. The vulnerability mappings performed using the COP method present greater coherence with the known hydrogeological behavior of the study areas, especially the Spanish aquifers. Nevertheless, further hydrogeological investigations are needed, such as ones to validate the obtained vulnerability maps.


Influence of Karst Landscape on Planetary Boundary Layer Atmosphere: A Weather Research and Forecasting (WRF) ModelBased Investigation, 2011,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Leeper R. Mahmood R, Quintanar A. I.

Karst hydrology provides a unique set of surface and subsurface hydrological components that affect soilmoisture variability. Over karst topography, surface moisture moves rapidly below ground via sink holes,vertical shafts, and sinking streams, reducing surface runoff and moisture infiltration into the soil. In addition,subsurface cave blockage or rapid snowmelt over karst can lead to surface flooding. Moreover, regionsdominated by karst may exhibit either drier or wetter soils when compared to nonkarst landscape. However,because of the lack of both observational soil moisture datasets to initialize simulations and regional landsurface models (LSMs) that include explicit karst hydrological processes, the impact of karst on atmosphericprocesses is not fully understood. Therefore, the purpose of this study was to investigate the importance ofkarst hydrology on planetary boundary layer (PBL) atmosphere using the Weather Research and ForecastingModel (WRF). This research is a first attempt to identify the impacts of karst on PBL. To model the influenceof karst hydrology on atmospheric processes, soil moisture was modified systematically over the WesternKentucky Pennyroyal Karst (WKYPK) region to produce an ensemble of dry and wet anomaly experiments.Simulations were conducted for both frontal- and nonfrontal-based convection. For the dry ensemble, cloudcover was both diminished downwind of karst because of reduced atmospheric moisture and enhanced slightlyupwind as moist air moved into a region of increased convection compared to control simulations (CTRL).Moreover, sensible (latent) heat flux and PBL heights were increased (decreased) compared to CTRL. Inaddition, the wet ensemble experiments reduced PBL heights and sensible heat flux and increased cloud coverover karst compared to CTRL. Other changes were noted in equivalent potential temperature (ue) andvertical motions and development of new mesoscale circulation cells with alterations in soil moisture overWKYPK. Finally, the location of simulated rainfall patterns were altered by both dry and wet ensembles withthe greatest sensitivity to simulated rainfall occurring during weakly forced or nonfrontal cases. Simulatedrainfall for the dry ensemble was more similar to the North American Regional Reanalysis (NARR) thanCTRL for the nonfrontal case. Furthermore, the initial state of the atmosphere and convective triggers werefound to either enhance or diminish simulated atmospheric responses


Computational Investigation of Fundamental Mechanisms Contributing to Fracture Dissolution and the Evolution of Hypogene Karst Systems, 2011,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Chaudhuri A. , Rajaram H. , Viswanathan H. S. , Zyvoloski G. , Stauffer P. H.

Hypogene karst systems evolve by dissolution resulting from the cooling of water flowing upward against the geothermal gradient in limestone formations. We present a comprehensive coupled-process model of fluid flow, heat transfer, reactive transport and buoyancy effects to investigate the origin of hypogene karst systems by fracture dissolution. Our model incorporates the temperature and pressure dependence of the solubility and dissolution kinetics of calcite. Our formulation inherently incorporates mechanisms such as “mixing corrosion” that have been implicated in the formation of hypogene cave systems. It also allows for rigorous representation of temperature-dependent fluid density and its consequences at various stages of karstification. The model is applied to investigate karstification over geological time scales in a network of faults/fractures that serves as a vertical conduit for upward flow. We considered two different conceptual hydrogeologic models. In the first model, the upward flow is controlled by a constant pressure gradient. In the second model, the flow is induced by topographic effects in a mountainous hydrologic system. During the very early stages of fracture growth, there is a positive feedback between fluid flow rate, heat transfer and dissolution. In this stage the dissolution rate is largely controlled by the retrograde solubility of calcite and aperture growth occurs throughout the fracture. For the first model, there is a period of slow continuous increase in the mass flow rate through the fracture, which is followed by an abrupt rapid increase. We refer to the time when this rapid increase occurs as the maturation time. For the second model of a mountainous hydrologic system, the fluid flux through the fracture remains nearly constant even though the fracture permeability and aperture increase. This is largely because the permeability of the country rock does not increase significantly. While this limits the fluid flux through the system, it does not impede karstification. At later stages, forced convection and buoyant convection effects arise in both models due to the increased permeability of the evolving fracture system. Our results suggest that there is s strong tendency for buoyant convection cells to form under a wide range of conditions. A modified Rayleigh number provides a unified quantitative criterion for the onset of buoyant convection across all cases considered. Once buoyant convection cells are set up, dissolution is sustained in the upward flow portions of the cells, while precipitation occurs in the regions of downward flow. We discuss the implications of this type of flow pattern for the formation of hot springs and mazework caves, both of which are characteristic of hypogene karst environments. We also investigate the sensitivity of karst evolution to various physical and geochemical factors.


Comparative study of specific groundwater vulnerability of a karst aquifer in central Florida, 2012,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Van Beynen P. E. , Niedzielski M. A. , Bialkowskajelinska E. , Alsharifa K. , Matusick J.

The Floridan aquifer system (FAS) is known to be one of the most productive aquifer systems in the USA. With the FAS being a karst aquifer, it presents unique challenges to land use planners because of inherent vulnerabilities to contamination through direct connections between the aquifer and the surface. In this study a new Geographic Information Systems (GIS) -based index, the Karst Aquifer Vulnerability Index (KAVI), incorporates geologic layers used in intrinsic groundwater vulnerability models (GVMs) plus an epikarst layer specific to karst, with land use coverages to create a specific groundwater vulnerability model. The KAVI model was compared to another specific vulnerability model, the Susceptibility Index (SI). Tabulation of the percentage areas of vulnerability classes reveals major differences between the two models with SI suggesting greater vulnerability for the study area than KAVI. Validation of these two models found that KAVI vulnerability levels best reproduced spatially varying concentrations of nitrate in the aquifer. Sensitivity analysis, the application of a variation index and measuring the effective weights for each parameter included in KAVI confirmed the importance of closed depressions but also aquifer hydraulic conductivity. The inclusion of land use was justified; however, effective weight analysis determined its assigned weight was too high as used in the initial calculation of KAVI.


Passage Growth and Development, 2012,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Palmer, Arthur N.

Of all cave types, solution caves have the most complex developmental histories. They are formed by the dissolving action of underground water as it flows through fractures, partings, and pores in bedrock. Such caves must grow rapidly enough to reach traversable size before the rock material that contains them is destroyed by surface erosion. Because of their sensitivity to local landscapes and patterns of water flow, solution caves contain clues to the entire geomorphic, hydrologic, and climatic history of the region in which they are located. At the land surface most of this evidence is rapidly lost to weathering and erosion; but in caves these clues can remain intact for millions of years.


Simulation of flow processes in a large scale karst system with an integrated catchment model (Mike She) Identification of relevant parameters influencing spring discharge, 2012,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Doummar J. , Sauter M. , Geyer T.

In a complex environment such as karst systems, it is difficult to assess the relative contribution of the different components of the system to the hydrological system response, i.e. spring discharge. Not only is the saturated zone highly heterogeneous due to the presence of highly permeable conduits, but also the recharge processes. The latter are composed of rapid recharge components through shafts and solution channels and diffuse matrix infiltration, generating a highly complex, spatially and temporally variable input signal. The presented study reveals the importance of the compartments vegetation, soils, saturated zone and unsaturated zone. Therefore, the entire water cycle in the catchment area Gallusquelle spring (Southwest Germany) is modelled over a period of 10 years using the integrated hydrological modelling system Mike She by DHI (2007). Sensitivity analyses show that a few individual parameters, varied within physically plausible ranges, play an important role in reshaping the recessions and peaks of the recharge functions and consequently the spring discharge. Vegetation parameters especially the Leaf Area Index (LAI) and the root depth as well as empirical parameters in the relationship of Kristensen and Jensen highly influence evapotranspiration, transpiration to evaporation ratios and recharge respectively. In the unsaturated zone, the type of the soil (mainly the hydraulic conductivity at saturation in the water retention and hydraulic retention curves) has an effect on the infiltration/evapotranspiration and recharge functions. Additionally in the unsaturated karst, the saturated moisture content is considered as a highly indicative parameter as it significantly affects the peaks and recessions of the recharge curve. At the level of the saturated zone the hydraulic conductivity of the matrix and highly conductive zone representing the conduit are dominant parameters influencing the spring response. Other intermediate significant parameters appear to influence the characteristics of the spring response yet to a smaller extent, as for instance bypass and the parameters a in the Van Genuchten relation for soil moisture content curves.


Integration of Seismic-Reflection and Well Data to Assess the Potential Impact of Stratigraphic and Structural Features on Sustainable Water Supply from the Floridan Aquifer System, Broward County, Florida, 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Cunningham, K. J.

The U.S. Geological Survey and Broward County water managers commenced a 3.5-year cooperative study in July 2012 to refine the geologic and hydrogeologic framework of the Floridan aquifer system (FAS) in Broward County. A lack of advanced stratigraphic knowledge of the physical system and structural geologic anomalies (faults and fractures originating from tectonics and karst-collapse structures) within the FAS pose a risk to the sustainable management of the resource.

The principal objective of the study is to better define the regional stratigraphic and structural setting of the FAS in Broward County. The objective will be achieved through the acquisition, processing, and interpretation of new seismic-reflection data along several canals in Broward County. The interpretation includes integration of the new seismic-reflection data with existing seismic-reflection profiles along Hillsboro Canal in Broward County and within northeast Miami-Dade County, as well as with data from nearby FAS wellbores. The scope of the study includes mapping the geologic, hydrogeologic, and seismic-reflection framework of the FAS, and identifying stratigraphic and structural characteristics that could either facilitate or preclude the sustainable use of the FAS as an alternate water supply or a treated effluent repository. In addition, the investigation offers an opportunity to: (1) improve existing groundwater flow models, (2) enhance the understanding of the sensitivity of the groundwater system to well-field development and upconing of saline fluids, and (3) support site selection for future FAS projects, such as Class I wells that would inject treated effluent into the deep Boulder Zone.


Niphargus: a silicon band-gap sensor temperature logger for high-precision environmental monitoring. , 2015,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943

A temperature logger, named “Niphargus”, was developed at the Geological Survey of Belgium to monitor temperature of local natural processes. It has a sensitivity of the order of a few hundredths of degrees on temperature variability in open air, caves, soils and river environment. The newly developed instrument uses a state-of-the-art band-gap silicon temperature sensor with integrated digital output. This sensor reduces the risk of drift associated with thermistor-based sensing devices, especially in humid environments. The Niphargus is designed to be highly reliable, low-cost and powered by a single lithium cell with up to several years autonomy, depending on the sampling rate and environmental conditions. A batch of Niphargus loggers was also compared to a precision thermistor to assess absolute temperature accuracy. Further characterization came from two field case studies in Belgium: monitoring of a mineralized water stream near the town of Spa and air temperature monitoring inside Han-sur-Lesse cave.


Niphargus: a silicon band-gap sensor temperature logger for high-precision environmental monitoring. , 2015,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943

A temperature logger, named “Niphargus”, was developed at the Geological Survey of Belgium to monitor temperature of local natural processes. It has a sensitivity of the order of a few hundredths of degrees on temperature variability in open air, caves, soils and river environment. The newly developed instrument uses a state-of-the-art band-gap silicon temperature sensor with integrated digital output. This sensor reduces the risk of drift associated with thermistor-based sensing devices, especially in humid environments. The Niphargus is designed to be highly reliable, low-cost and powered by a single lithium cell with up to several years autonomy, depending on the sampling rate and environmental conditions. A batch of Niphargus loggers was also compared to a precision thermistor to assess absolute temperature accuracy. Further characterization came from two field case studies in Belgium: monitoring of a mineralized water stream near the town of Spa and air temperature monitoring inside Han-sur-Lesse cave.


Initial conditions or emergence: What determines dissolution patterns in rough fractures?, 2015,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943

Dissolution of fractured rocks is often accompanied by the formation of highly localized flow paths. While the fluid flow follows existing fractures in the rock, these fissures do not, in general, open uniformly. Simulations and laboratory experiments have shown that distinct channels or “wormholes”develop within the fracture, from which a single highly localized flow path eventually emerges. The aim of the present work is to investigate how these emerging flow paths are influenced by the initial aperture field. We have simulated the dissolution of a single fracture starting from a spatially correlated aperture distribution. Our results indicate a surprising insensitivity of the evolving dissolution patterns and flow rates to the amplitude and correlation length characterizing the imposed aperture field. We connect the similarity in outcomes to the self-organization of the flow into a small number of wormholes, with the spacing determined of the longest wormholes. We have also investigated the effect of a localized region of increased aperture on the developing dissolution patterns. A competition was observed between the tendency of the high-permeability region to develop the dominant wormhole and the tendency of wormholes to spontaneously nucleate throughout the rest of the fracture. We consider the consequences of these results for the modeling of dissolution in fractured and porous rocks.


Results 61 to 71 of 71
You probably didn't submit anything to search for