Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That flank is a limb of a fold [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for constraints (Keyword) returned 76 results for the whole karstbase:
Showing 61 to 75 of 76
Deep confined karst detection, analysis and paleo-hydrology reconstruction at a basin-wide scale using new geophysical interpretation of borehole logs, 2011, Laskow M. , Gendler M. , Goldberg I. , Gvirtzman H. , Frumkin A.

Deep karst voids can be identified by a new method of geophysical interpretation of commonly used borehole logs in deeply confined carbonate aquifers. We show that deep, buried karst voids can be characterized by combining this geophysical interpretation together with geological and hydrological data, and with known speleological constraints. We demonstrate how this characterization can reveal past hydrological regimes and allow mapping of karst distribution on a basin-wide scale. A combined analysis of geophysical, geological, hydrological, and speleological data in the confined Yarkon–Taninim aquifer, Israel, led us to reconstruct past groundwater levels at different relief and sea levels, with the karst voids as a marker for long-term flow close to the water table. Paleo-canyons along the Mediterranean Sea shoreline strongly affected the region’s paleo-hydrology, by serving as major outlets of the aquifer during most of the Cenozoic. We conclude that intensive karstification was promoted by flow periods of longer duration and/or higher flux and flow velocities close to the aquifer’s past and present outlets. In addition, we suggest that karst voids found under shallow confinement were developed by renewed aggressivity due to hypogene water rising in cross-formational flow becoming mixed with fresh lateral water flow from the east.


Carbonate porosity creation by mesogenetic dissolution: Reality or illusion?, 2012, Ehrenberg Stephen N. , Walderhaug Olav, Bjorlykke Knut

Many authors have proposed that significant volumes of porosity are created by deep-burial dissolution in carbonate reservoirs. We argue, however, that this model is unsupported by empirical data and violates important chemical constraints on mass transport. Because of the ubiquitous presence and rapid kinetics of dissolution of carbonate minerals, the mesogenetic pore waters in sedimentary basins can be expected to be always saturated and buffered by carbonates, providing little opportunity for the preservation of significantly undersaturated water chemistry during upward flow, even if the initial generation of such undersaturated pore water could occur. A review of the literature where this model has been advanced reveals a consistent lack of quantitative treatment. In consequence, the presumption of mesogenetic dissolution producing a net increase in secondary porosity should not be used in the prediction of carbonate reservoir quality. 


Uranium Series Dating of Speleothems, 2012, Sptl Christoph, Boch Ronny

Radioactive decay of uranium and thorium isotopes at constant rates provides a tool to determine the age of speleothems with high precision and accuracy. As with any dating method, a fundamental prerequisite is the lack of post-depositional alteration, that is, no gain or loss of isotopes within the decay chain of interest. Using state-of-the-art instrumentation, this method allows dating speleothems between essentially zero and ca. 600,000 years before present. Multiple age determinations are typically performed along the extension axis of a stalagmite to decipher its detailed growth history. Uranium series chronology of speleothems not only provides useful constraints on speleogenetic processes, but forms the backbone of the increasingly important scientific field using stalagmites (and less commonly flowstone) as paleoenvironmental archives.


From soil to cave: Transport of trace metals by natural organic matter in karst dripwaters, 2012, Hartland A. , Fairchild I. J. , Lead J. R. , Borsato A. , Baker A. , Frisia S. , Baalousha M.

This paper aims to establish evidence for the widespread existence of metal binding and transport by natural organic matter (NOM) in karst dripwaters, the imprint of which in speleothems may have important climatic significance. We studied the concentration of trace metals and organic carbon (OC) in sequentially filtered dripwaters and soil leachates from three contrasting sites: Poole's Cavern (Derbyshire, UK), Lower Balls Green Mine (Gloucestershire, UK) and Grotta di Ernesto (Trentino, Italy). The size-distribution of metals in the three soils was highly similar, but distinct from that found in fractionated dripwaters: surface-reactive metals were concentrated in the coarse fraction (>100 nm) of soils, but in the fine colloidal (b100 nm) and nominally dissolved (b1 nm) fractions of dripwaters. The concentration of Cu, Ni and Co in dripwater samples across all sites were well correlated (R2=0.84 and 0.70, Cu vs. Ni, Cu vs. Co, respectively), indicating a common association. Furthermore, metal ratios (Cu:Ni, Cu:Co) were consistent with NICA-Donnan n1 humic binding affinity ratios for these metals, consistent with a competitive hierarchy of binding affinity (Cu>Ni>Co) for sites in colloidal or dissolved NOM. Large shifts in Cu:Ni in dripwaters coincided with high fluxes of particulate OC (following peak infiltration) and showed increased similarity to ratios in soils, diagnostic of qualitative changes in NOMsupply (i.e. fresh inputs of more aromatic/hydrophobic soil organic matter (SOM) with Cu outcompeting Ni for suitable binding sites). Results indicate that at high-flows (i.e. where fracture-fed flow dominates) particulates and colloids migrate at similar rates, whereas, in slow seepage-flow dripwaters, particulates (>1 μm) and small colloids (1–100 nm) decouple, resulting in two distinct modes of NOM–metal transport: high-flux and low-flux. At the hyperalkaline drip site PE1 (in Poole's Cavern), high-fluxes of metals (Cu, Ni, Zn, Ti, Mn, Fe) and particulate NOM occurred in rapid, short-lived pulses following peak infiltration events, whereas low-fluxes of metals (Co and V>Cu, Ni and Ti) and fluorescent NOM (b ca. 100 nm) were offset from infiltration events, probably because small organic colloids (1–100 nm) and solutes (b1 nm) were slower to migate through the porous matrix than particulates. These results demonstrate the widespread occurrence of both colloidal and particulate NOM–metal transport in cave dripwaters and the importance of karst hydrology in affecting the breakthrough times of different species. Constraints imposed by soil processes (colloid/particle release), direct contributions of metals and NOM from rainfall, and flow-routing (colloid/particle migration) are expected to determine the strength of correlations between NOM-transported metals in speleothems and climatic signals. Changes in trace metal ratios (e.g. Cu:Ni) in speleothems may encode information on NOMcomposition, potentially aiding in targeting of compound-specific investigations and for the assessment of changes in the quality of soil organic matter.


Quartz sandstone peak forest landforms of Zhangjiajie Geopark, northwest Hunan Province, China: pattern, constraints and comparison, 2012, Yang Guifang, Tian Mingzhong, Zhang Xujiao, Chen Zhenghong, Wray Robert A. L. , Ge Zhiliang, Ping Yamin, Ni Zhiyun, Yang Zhen

The Zhangjiajie Sandstone Peak Forest Geopark in northwest Hunan Province, China, is a comprehensive geopark containing many spectacular quartz sandstone landforms, limestone karst landscapes and various other important geoheritage resources. It is listed as a UNESCO World Geopark and is also part of the World Heritage Wulingyuan Scenic and Historic Interest Area for its important landscape features. Many of the sandstone landforms, particularly the vast number of thin pillars or spires, are very unusual and serve as the core landscapes of the geopark. But Zhangjiajie displays a diverse range of landform types, exhibiting spectacular patterns and regular distributions. In this paper, the geomorphic traits, distribution pattern and constraints of the sandstone landforms of the Zhangjiajie Geopark are examined. Our study indicates that in the outcropping areas, the sandstones display four distinctive levels from 300 to 1,000 m above sea level, and these extend clearly from the highest sandstone plateau platform to the center of the valleys. The high sandstone platforms developed close to a flat high-level erosional surface, and subsequent erosion into this plateau has resulted in successively lower levels of landforms that transition gradually from peak walls, peak clusters, peak forests and peak pillars to remnant peaks in the lower valley bottoms. The form and distribution of the Zhangjiajie sandstone landforms are primarily dominated by the geological setting, particularly the presence of brittle structures (fractures and joint sets) trending NNW, ENE and NE. Triggered by the episodic tectonic movements, major streams and escarpments frequently occur along these structural directions, while some of the peak walls, peak clusters and peak forests have their longer elongated axes corresponding to NE or NNW directions, with an increased density of peak forms at the intersection of these fractures and joints. The geometry of the diverse sandstone landforms is also influenced to a certain degree by the climatic, water system distribution, lithologic properties, biological process, meteorological features and denudation processes. The suite of quartz sandstone landforms in Zhangjiajie can be compared with other sandstone landscapes regionally, and our interpretation of the sandstone peak forest formation processes offers a significant contribution to the study of topographic features and the geomorphic evolution of sandstone landscapes


Epikarst Processes, 2013, Bakalowicz, M.

Epikarst forms the interface zone between the infiltration zone and soil and plant cover. It is the superficial part of karst landscapes characterized by a fracturing more developed than in the underlying infiltration zone, because of the action of rock constraints, climate, and plants. The processes at the origin of epikarst are described, as well as those contributing to its destruction. The part played by epikarst in the functioning of karst aquifers is analyzed. 


Spatial and temporal changes in invertebrate assemblage structure from the entrance to deep-cave zone of a temperate marble cave, 2013, Tobin Benjamin W. , Hutchins Benjamin T. , Schwartz Benjamin F.

Seasonality in surface weather results in seasonal temperature and humidity changes in caves. Ecological and physiological differences among trogloxenes, troglophiles, and troglobionts result in species-dependent responses to this variability. To investigate these responses, we conducted five biological inventories in a marble cave in the Sierra Nevada Range, California, USA between May and December 2010. The cave was divided into six quadrats and temperature was continuously logged in each (humidity was logged at the entrance and in the deep cave). With increasing distance from the entrance, temperature changes were increasingly attenuated and lagged relative to surface temperature. Linear regressions were created to determine the relationship between measured environmental variables and diversity for cavernicoles (troglobionts and troglophiles) and trogloxenes cave– wide and in the transition zone. Diversity for cavernicoles and trogloxenes peaked in the entrance and deep cave zones, respectively. Quadrat, date, 2-week antecedent temperature average, 2-week antecedent temperature range, and trogloxene abundance explained 76% of cavernicole diversity variability. Quadrat explained 55% of trogloxene diversity variability. In the transition zone, trogloxene abundance explained 26% of cavernicole variability and 2-week antecedent temperature and 2-week antecedent temperature range explained 40% of trogloxene variability. In the transition zone, trogloxene diversity was inversely related to 2-week antecedent temperature average and 2-week antecedent temperature range, suggesting that species were moving into the transition zone when temperature was most stable. In a CCA of cavernicoles distribution data and environmental variables, 35% of variation in species-specific distributions was attributable to quadrat, and non-significant percentages were explained by date and environmental variables. Differences in assemblage structure among quadrats were largely due to differences between distributions of trogloxenes and cavernicoles, but responses varied among species. Differences are likely due to ecological niche width, physiological constraints, and competition.


DELINEATION AND CLASSIFICATION OF KARST DEPRESSIONS USING LIDAR: FORT HOOD MILITARY INSTALLATION, TEXAS, 2013, Shaw Faulkner M. G. , Stafford K. W. , Bryant A. W.

The Fort Hood Military Installation is a karst landscape characterized by Cretaceous-age limestone plateaus and canyons in Bell and Coryell Counties, Texas. The area is located in the Lampasas Cut Plain region of the Edwards Plateau and is stratigraphically defined by exposures of the Fredericksburg Group. Spatial interpolation of 105 km2 of the Fort Hood Military Installation provided depression data that were delineated and classified using geoanalytical methods. Most of the karst features within the study area are predominantly surficial expressions of collapse features, creating windows into karst conduits with surficial exposures of epikarst spatially limited.The increasing capabilities of GIS (Geographic Information Systems) and accuracy of geographically referenced data has provided the basis for more detailed terrain analysis and modeling. Research on terrain-related surface features is highly dependent on terrain data collection and the generation of digital models. Traditional methods such as field surveying can yield accurate results; however, they are limited by time and physical constraints. Within the study area, dense vegetation and military land use preclude extensive traditional karst survey inventories. Airborne Light Detection and Ranging (LiDAR) provides an alternative for high-density and high-accuracy three-dimensional terrain point data collection. The availability of high density data makes it possible to represent terrain in great detail; however, high density data significantly increases data volume, which can impose challenges with respect to data storage, processing, and manipulation. Although LiDAR analysis can be a powerful tool, filter mechanisms must be employed to remove major natural and anthropogenic terrain modifications resulting from military use, road building and maintenance, and the natural influence of water bodies throughout the study area.


PONDERING THE IMPORTANCE OF SUBAERIAL CORROSION AS A SPELEOGENETIC AGENT, 2014, Sasowsky, I. D.

Subaerial corrosion has been recognized as an important cave modifying process in limited settings. But is it possible that we overlook its importance in other cases? Could it actually be a significant speleogenetic agent in its own right? Numerous corroding agents have been identified including sulfuric acid, carbonic acid, ambient water vapor, and thermal water vapor. Morphogenetic features have been described, and cautions issued about possible confusion with hypogene features. Theoretical calculations seem to limit the importance of corrosion in many settings, but it appears that great care must be taken, especially for possible confusion between “hypogene” morphologies in a cave.
Some caves in the Iberian Range (Spain) seem undoubtedly hypogene in origin based on hydrologic constraints. They also contain morphologies that are consistent with this origin. But, extreme corrosion of speleothems and bedrock may be masking the nature of the cave morphology post-drainage of the forming waters. Topographic position of some caves suggests the possibility of a strong component of subaerial corrosion as the cave forming agent


Geologic constraints and speleogenesis of Cova des Pas de Vallgornera, a complex coastal cave from Mallorca Island (Western Mediterranean), 2014, Ginés J. , Fornós J. J. , Ginés A. , Merino A. , Gràcia F.

The flat areas of eastern and southern Mallorca host a remarkable coastal karst, where Cova des Pas de Vallgornera stands out due to its length (more than 74 km) and its special morphological suite. The pattern of the cave is quite heterogeneous showing sharp differences produced by the architecture of the Upper Miocene reef: spongework mazes and collapse chambers dominate in the reef front facies, whereas joint-guided conduits are the rule in the back reef carbonates. Regarding the speleogenesis of the system, a complex situation is envisaged involving three main agents: coastal mixing dissolution, drainage of meteoric diffuse recharge, and hypogene basal recharge related to local geothermal phenomena. The cave system is disposed in two main tiers of passages, of which geomorphologic interpretations are derived from their elevation data. The evolutionary trends as well as the chronology of the different cave sections are difficult to establish owing to the frequent shifting of the coastal base level during the Plio-Quaternary. In this respect, the genesis and evolution of the cave were fully controlled by sea-level fluctuations in the Western Mediterranean basin, with the main phases of cave formation, based on vertebrate paleontological data, going back to mid-Pliocene times.


Molecular analyses of microbial abundance and diversity in the water column of anchialine caves in Mallorca, Spain., 2014, Menning D. M. , Boop L. M. , Graham E. D. , Garey J. R.

Water column samples from the island of Mallorca, Spain were collected from one site in Cova des Pas de Vallgornera (Vallgornera) and three sites (Llac Martel, Llac Negre, and Llac de les Delícies) in Coves del Drac (Drac). Vallgornera is located on the southern coast of Mallorca approximately 57 km southwest of Coves del Drac. Drac is Europe's most visited tourist cave, whereas Vallgornera is closed to the public. Water samples were analyzed for water chemistry using spectrophotometric methods, by quantitative PCR for estimated total abundance of microbial communities, and by length heterogeneity PCR for species richness and relative species abundance of Archaea, Bacteria, and microbial eukaryotes. Estimated total abundance was multiplied by relative species abundance to determine the absolute species abundance. All sites were compared to determine spatial distributions of the microbial communities and to determine water column physical and chemical gradients. Water quality and community structure data indicate that both Drac Delícies and Drac Negre have distinct biogeochemical gradients. These sites have communities that are similar to Vallgornera but distinct from Drac Martel, only a few hundred meters away. Drac Martel is accessible to the general public and had the most dissimilar microbial community of all the sites. Similarities among communities at sites in Drac and Vallgornera suggest that these two spatially separated systems are operating under similar ecological constraints.


A multi-method approach for speleogenetic research on alpine karst caves. Torca La Texa shaft, Picos de Europa (Spain), 2014,

Speleogenetic research on alpine caves has advanced significantly during the last decades. These investigations require techniques from different geoscience disciplines that must be adapted to the methodological constraints of working in deep caves. The Picos de Europa mountains are one of the most important alpine karsts, including 14% of the World’s Deepest Caves (caves with more than 1 km depth). A speleogenetic research is currently being developed in selected caves in these mountains; one of them, named Torca La Texa shaft, is the main goal of this article. For this purpose, we have proposed both an optimized multi-method approach for speleogenetic research in alpine caves, and a speleogenetic model of the Torca La Texa shaft. The methodology includes: cave surveying, dye-tracing, cave geometry analyses, cave geomorphological mapping, Uranium series dating (234U/230Th) and geomorphological, structural and stratigraphical studies of the cave surroundings. The SpeleoDisc method was employed to establish the structural control of the cavity. Torca La Texa (2,653 m length, 215 m depth) is an alpine cave formed by two cave levels, vadose canyons and shafts, soutirage conduits, and gravity-modified passages. The cave was formed prior to the Middle Pleistocene and its development was controlled by the drop of the base level, producing the development of the two cave levels. Coevally to the cave levels formation, soutirage conduits originated connecting phreatic and epiphreatic conduits and vadose canyons and shafts were formed. Most of the shafts were created before the local glacial maximum, (43-45 ka) and only two cave passages are related to dolines developed in recent times. The cave development is strongly related to the structure, locating the cave in the core of a gentle fold with the conduits’ geometry and orientation controlled by the bedding and five families of joints.


Stable isotope data as constraints on models for the origin of coralloid and massive speleothems: The interplay of substrate, water supply, degassing, and evaporation, 2015, Caddeo Guglielmo A. , Railsback L. Bruce, Dewaele Jo, Frau Franco

Many speleothems can be assigned to one of two morphological groups: massive speleothems, which consist of compact bulks of material, and coralloids, which are domal to digitate in form. Faster growth on protrusions of the substrate occurs in the typical growth layers of coralloids (where those layers are termed “coralloid accretions”), but it is not observed in the typical layers of massive speleothems, which in contrast tend to smoothen the speleothem surface (and can therefore be defined as "smoothing accretions"). The different growth rates on different areas of the substrate are explainable by various mechanisms of CaCO3 deposition (e.g., differential aerosol deposition, differential CO2 and/or H2O loss from a capillary film of solution, deposition in subaqueous environments). To identify the causes of formation of coralloids rather than massive speleothems, this article provides data about d13C and d18O at coeval points of both smoothing and coralloid accretions, examining the relationship between isotopic composition and the substrate morphology. In subaerial speleothems, data show an enrichment in heavy isotopes both along the direction of water flow and toward the protrusions. The first effect is due to H2O evaporation and CO2 degassing during a gravity-driven flow of water (gravity stage) and is observed in smoothing accretions; the second effect is due to evaporation and degassing during water movement by capillary action from recesses to prominences (capillary stage) and is observed in subaerial coralloids. Both effects coexist in smoothing accretions interspersed among coralloid ones (intermediate stage). Thus this study supports the origin of subaerial coralloids from dominantly capillary water and disproves their origin by deposition of aerosol from the cave air. On the other hand, subaqueous coralloids seem to form by a differential mass-transfer from a still bulk of water towards different zones of the substrate along diffusion flux vectors of nutrients perpendicular to the isodepleted surfaces. Finally, this isotopic method has proved useful to investigate the controls on speleothem morphology and to obtain additional insights on the evolution of aqueous solutions inside caves.


Stable isotope data as constraints on models for the origin of coralloid and massive speleothems: The interplay of substrate, water supply, degassing, and evaporation, 2015,

Many speleothems can be assigned to one of two morphological groups: massive speleothems, which consist of compact bulks of material, and coralloids, which are domal to digitate in form. Faster growth on protrusions of the substrate occurs in the typical growth layers of coralloids (where those layers are termed “coralloid accretions”), but it is not observed in the typical layers of massive speleothems, which in contrast tend to smoothen the speleothem surface (and can therefore be defined as "smoothing accretions"). The different growth rates on different areas of the substrate are explainable by various mechanisms of CaCO3 deposition (e.g., differential aerosol deposition, differential CO2 and/or H2O loss from a capillary film of solution, deposition in subaqueous environments). To identify the causes of formation of coralloids rather than massive speleothems, this article provides data about d13C and d18O at coeval points of both smoothing and coralloid accretions, examining the relationship between isotopic composition and the substrate morphology. In subaerial speleothems, data show an enrichment in heavy isotopes both along the direction of water flow and toward the protrusions. The first effect is due to H2O evaporation and CO2 degassing during a gravity-driven flow of water (gravity stage) and is observed in smoothing accretions; the second effect is due to evaporation and degassing during water movement by capillary action from recesses to prominences (capillary stage) and is observed in subaerial coralloids. Both effects coexist in smoothing accretions interspersed among coralloid ones (intermediate stage). Thus this study supports the origin of subaerial coralloids from dominantly capillary water and disproves their origin by deposition of aerosol from the cave air. On the other hand, subaqueous coralloids seem to form by a differential mass-transfer from a still bulk of water towards different zones of the substrate along diffusion flux vectors of nutrients perpendicular to the isodepleted surfaces. Finally, this isotopic method has proved useful to investigate the controls on speleothem morphology and to obtain additional insights on the evolution of aqueous solutions inside caves.


Thermal damping and retardation in karst conduits, 2015, Luhmann A. J. , Covington M. D. , Myre J. M. , Perne M. , Jones S. W. , Alexander Jr. E. C. , Saar M. O

Water temperature is a non-conservative tracer in the environment. Variations in recharge temperature are damped and retarded as water moves through an aquifer due to heat exchange between water and rock. However,within karst aquifers, seasonal and short-term fluctuations in recharge temperature are often transmitted over long distances before they are fully damped. Using analytical solutions and numerical simulations, we develop relationshipsthat describe the effect of flow path properties, flow-through time, recharge characteristics, and water and rock physical properties on the damping and retardation of thermal peaks/troughs in karst conduits. Using these relationships, one can estimate the thermal retardation and damping that would occur under given conditions with a given conduit geometry. Ultimately, these relationships can be used with thermal damping and retardation field data to estimate parameters such as conduit diameter. We also examine sets of numerical simulations where we relax some of the assumptions used to develop these relationships, testing the effects of variable diameter, variable velocity, open channels, and recharge shape on thermal damping and retardation to provide some constraints on uncertainty. Finally, we discuss a multitracer experiment that provides some field confirmation of our relationships. High temporal resolution water temperature data are required to obtain sufficient constraints on the magnitude and timing of thermal peaks and troughs in order to take full advantage of water temperature as a tracer.

 


Results 61 to 75 of 76
You probably didn't submit anything to search for