Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That prusiking is the art of ascending a standing line (rope) by a caver with prusik knots [13] as opposed to the use of a mechanical ascender. see also ascender; knots; mechanical ascender; prusik knot; standing line.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for saturated zone (Keyword) returned 86 results for the whole karstbase:
Showing 76 to 86 of 86
Simulation of flow processes in a large scale karst system with an integrated catchment model (Mike She) Identification of relevant parameters influencing spring discharge, 2012, Doummar J. , Sauter M. , Geyer T.

In a complex environment such as karst systems, it is difficult to assess the relative contribution of the different components of the system to the hydrological system response, i.e. spring discharge. Not only is the saturated zone highly heterogeneous due to the presence of highly permeable conduits, but also the recharge processes. The latter are composed of rapid recharge components through shafts and solution channels and diffuse matrix infiltration, generating a highly complex, spatially and temporally variable input signal. The presented study reveals the importance of the compartments vegetation, soils, saturated zone and unsaturated zone. Therefore, the entire water cycle in the catchment area Gallusquelle spring (Southwest Germany) is modelled over a period of 10 years using the integrated hydrological modelling system Mike She by DHI (2007). Sensitivity analyses show that a few individual parameters, varied within physically plausible ranges, play an important role in reshaping the recessions and peaks of the recharge functions and consequently the spring discharge. Vegetation parameters especially the Leaf Area Index (LAI) and the root depth as well as empirical parameters in the relationship of Kristensen and Jensen highly influence evapotranspiration, transpiration to evaporation ratios and recharge respectively. In the unsaturated zone, the type of the soil (mainly the hydraulic conductivity at saturation in the water retention and hydraulic retention curves) has an effect on the infiltration/evapotranspiration and recharge functions. Additionally in the unsaturated karst, the saturated moisture content is considered as a highly indicative parameter as it significantly affects the peaks and recessions of the recharge curve. At the level of the saturated zone the hydraulic conductivity of the matrix and highly conductive zone representing the conduit are dominant parameters influencing the spring response. Other intermediate significant parameters appear to influence the characteristics of the spring response yet to a smaller extent, as for instance bypass and the parameters a in the Van Genuchten relation for soil moisture content curves.


Spatially dense drip hydrological monitoring and infiltration behaviour at the Wellington Caves, South East Australia, 2012, Jex Catherine N. , Mariethoz Gregoire, Baker Andy, Graham Peter, Andersen Martin S. , Acworth Ian, Edwards Nerilee, Azcurra Cecilia

Despite the fact that karst regions are recognised as significant groundwater resources, the nature of groundwater flow paths in the unsaturated zone of such fractured rock is at present poorly understood. Many traditional methods for constraining groundwater flow regimes in karst aquifers are focussed on the faster drainage components and are unable to inform on the smaller fracture or matrix-flow components of the system. Caves however, offer a natural inception point to observe both the long term storage and the preferential movement of water through the unsaturated zone of such fractured carbonate rock by monitoring of drip rates of stalactites, soda straws and seepage from fractures/micro fissures that emerge in the cave ceiling. Here we present the largest spatial survey of automated cave drip rate monitoring published to date with the aim of better understanding both karst drip water hydrogeology and the relationship between drip hydrology and surface climate. By the application of cross correlation functions and multi-dimensional scaling, clustered by k-means technique, we demonstrate the nature of the relationships between drip behaviour and initial surface infiltration and similarity amongst the drip rate time series themselves that may be interpreted in terms of flow regimes and cave chamber morphology and lithology.


Environmental Hydrogeological Study of Louros watershed, Epirus, Greece, 2012, Konstantina Katsanou

The present study aims to describe and characterize the Ionian zone karst formation concerning the karstification grade of carbonate formations and the development of aquifers, through the hydrogeological study of Louros River drainage basin, considering hydrological, hydrogeological and meteorological data, as well as major, trace element, rare earth element and isotope concentrations. It also aims to investigate basic karst properties such as storativity, homogeneity, infiltration coefficients and the parameters of the Louros basin hydrological balance.

To accomplish this aim daily discharge measurements obtained from Public Power Corporation at the Pantanassa station during the years 1956-1957, along with random discharge measurements from 15 springs along the basin performed by IGME between the years 1979-1989, daily meteorological data from 18 stations and 18 sets of potentiometric surface measurements from 38 sites were compiled. Additionally, chemical analyses on major and trace element concentrations of 42 rock samples and of five sets of water samples from 64 sampling sites, along with fourteen sets of successive periods in order to study the seasonal variation in the chemical composition of 11 springs and REE concentrations of 116 water samples. Moreover isotope ratios from 129 rain samples collected at five different altitudes, 331 samples of surface and groundwater samples, radon measurements on 21 groundwater samples and microbiological on 46 samples of surface and groundwater were evaluated. Daily runoff and random spring discharge missing data were completed applying the SAC-SMA and MODKARST simulation algorithms and the values of these parameters for the duration of the research (2008-2010) were predicted. The accuracy of the predicted values was tested applying statistical methods but also against observed values from in situ measurements performed during the same period (2008-2010).

Louros River drainage basin is located at the southern part of Epirus and covers an area of 953 km2. It is elongated and together with the adjacent basin of River Arachthos they constitute the major hydrographic systems discharging in the Amvrakikos Gulf. The main morphological features of the basin are elongated mountain ranges and narrow valleys, which are the result of tectonic and other geological processes mainly controlled by the limestone-“flysch” alternations. The length of the river’s major channel, which is parallel to the major folding direction (NNW-SSE), is 73.5 km. The mountainous part of the hydrogeological basin covers an area of 400 km2 and its endpoint was set at the Pantanassa station, where discharge measurements are performed. The underground limits of the basin coincides with the surface one, defined by the flysch outcrops at the western margin of the Ziros-Zalongo fault zone to the South, the application of isotope determinations and hydraulic load distribution maps at the North and East.

Geologically, Louros River drainage basin is composed of the Ionian zone formations. Triassic evaporites constitute the base of the zone overlain by a thick sequence of carbonate and clastic sedimentary rocks deposited from the Late Triassic to the Upper Eocene. In more detail, from base to top, the lithostratigraphical column of the zone includes dolomite and dolomitic limestone, Pantokrator limestone, Ammonitico Rosso, Posidonia Shales, Vigla limestone, Upper Senonian limestone, Palaeocene-Eocene limestone and Oligocene “flysch”. The major tectonic features of the regions are folds with their axes trending SW-NE at the northern part and NNW-SSE to NNE-SSW southern of the Mousiotitsa-Episkopiko-Petrovouni fault system and the strike-slip fault systems of Ziros and Petousi.

The evaluation of the daily meteorological data revealed that December is the most humid month of the year followed by January, whereas July and August are the driest months. Approximately 40-45% of the annual precipitation is distributed during the winter time and 30% during autumn. The mean annual precipitation ranges from 897.4 to 2051.8 mm and the precipitation altitude relationship suggests an increased precipitation with altitude at a rate of 84 mm/100 m. The maximum temperature is recorded during August and it may reach 40°C and the minimum during January. The temperature variation with the altitude is calculated at 0.61°C/100 m. The maximum solarity time is 377.8 h, recorded during July at the Arta station. December displays the highest relative humidity with a value of 84.2% recorded again at the Arta station. The highest wind velocity values are recorded at the Preveza station and similar velocities are also recorded at the Ioannina station. The real evapotranspiration in Louros drainage basin ranges between 27-39%. The potential evapotranspiration was calculated from the Ioannina station meteorological data, which are considered more representative for Louros basin, at 785.8 mm of precipitation according to Thornthwaite and at 722.0 mm according to Penman-Monteith.

According to the SAC-SMA algorithm the total discharge (surficial and underground) for the years 2008-2010 ranges between 61-73% of the total precipitation. The algorithm simulates the vertical percolation of rainwater in both unsaturated and saturated zones taking into account 15 parameters including the tension water capacity of the unsaturated zone, the maximum water storage capacity of both unsaturated and saturated zones, the water amount escaping into deeper horizons and not recorded at the basin’s outlet, the percentage of impermeable ground which is responsible for instant runoff, etc. These parameters are correlated to the hydrograph and are recalculated according to it. Two interesting aspects were pointed out from the discharge measurements and the algorithm application. The first is related to the maximum amount of free water, which can be stored at the basic flow of the karstic system, which is very high for the whole basin, reaching 1200 mm of precipitation and the second is the amount of water filtered to the deeper horizons, which reaches 0.098.

The discharge of individual karstic units was simulated applying the specialized MODKARST code. The code, which transforms precipitation to discharge resolving mathematical equations of non-linear flow using the mass and energy balance, successfully completed the time series of available data of spring discharge measurements for the period between the years 2008-2010.

Additionally, a number of useful parameters including spring recharge, delay period between precipitation and discharge, the storage capacity of the discharge area were also calculated by the MODKARST code. These data enabled the calculation of the annual infiltration coefficient for each one of the 15 springs and for the whole basin; the latter was found to range between 38-50% of annual precipitation. The total supply area was estimated approximately at 395 km2, which is consistent with the area of Louros hydrogeological basin calculated from hydrogeological data.

The 18 sets of water table measurements, each one corresponding to a different period, revealed that the aquifers of the intermediate part of Louros basin, which are developed in Quaternary alluvial sediments, are laterally connected to the carbonate formations of the individual karstic spring units, forming a common aquifer with a common water table.

Groundwater flow follows a general N-S direction from the topographic highs to the coastal area with local minor shifts to NE-SW and NW-SE directions. The artificial lake at the position of the Public Power Corporation’s Dam at the south of the region is directly connected to the aquifer and plays an important role in water-level variation. The water table contours display a higher gradient to the southern part due to the decreased hydraulic conductivity of the limestones close to Agios Georgios village. The decreased hydraulic conductivity is believed to be the reason for the development of the homonymous spring although the hydraulic load distributions suggest the extension of the aquifer to the south and a relation to the water level in Ziros Lake, boreholes and the Priala springs. The hydraulic gradient in the broader region ranges between 4-16‰. The absolute water level variation between dry and humid season ranges from 2 m at the South to 15-20 m to the North with an average of 9 m.

The hydrological balance of Louros River mountainous basin according to the aforementioned data is calculated as follows: The total precipitation between the years 2008-2010 ranged between 5.67E+08-9.8E+08 m3 and the discharge at Pantanassa site between 3.47E+08-6.83E+08 m3. The real evapotransiration ranged between 29-39% of the precipitation. The total discharge (runoff and groundwater) accounted for 61-73% of the precipitation, whereas the basic flow due to the percolation ranged between 34-38%. Considering a mean water level variation of 9 m, between the dry and humid season, the water amount constituting the local storage is 2025Ε+07 m3.

Statistical evaluation on spring discharge data and the recession curves analysis revealed three distinct levels with diverse karstic weathering along Louros basin coinciding to the upper, intermediate and low flow of Louros River, respectively. The developed karstic units are generally complex but simple individual units develop as well. The response of spring discharge to the stored water amounts is immediate but with relatively large duration suggesting the storage of large quantities of water and a well-developed system of karstic conduits, which however has not yet met its complete evolution. The karst spring’s units are homogeneous and each one is distinguished from different recession coefficients.

The three levels of flow are also distinguished from the duration curves, which point to individual units upstream, complex units receiving and transmitting water to the adjacent ones in the middle part and complex that only receive water from the upper. This distinguishment is also enhanced by the groundwater’s major ion concentrations, which reveal Ca-HCO3 water-type upstream, along with the isotopic composition at the same part. The prevalent Ca-HCO3-Cl-SO4 water-type in the middle part, the Na-Ca-Cl-SO4 water-type downstream and isotope variation confirms this distinguishment. Moreover, REE variation is also consistent with the three levels. The assumption of relatively large stored water reserves, which contribute to analogous “memory” of spring karstic units, as pointed out by autocorreletion functions is enhanced from SAC-SMA algorithm which premises an increased capacity at the lower zone of basic flow, as well as from the hydrochemical and isotopic composition of groundwater. Monitoring of the seasonal variation in groundwater composition revealed minor variations of hydrochemical parameters and remarkably stable isotopic composition. Both aspects can be explained by the existence of a considerable water body acting as a retarder to external changes.

The crosscorrelation functions suggest a well-developed karstic system, which however has not yet reached its complete maturity also confirmed from field observations. The same conclusion is extracted from the homogeneous evolution at the interval of each karstic unit as demonstrated from recession curves on spring hydrographs.

The results from hydrochemical analyses also revealed the effect of evaporitic minerals and phosphate-rich rocks in groundwater composition and confirmed the hydraulic relationships between surface and groundwater.

The study of the isotopic composition also contributed to exclude the potential connection between the Ioannina and Louros basins, confirmed the meteoric origin of groundwater and revealed the effect of seawater in the chemical composition of few sampling sites.

The microbiological research only revealed minor incidents of contamination and significant attenuation of microorganisms during periods of high discharge.


Mixing of water in a carbonate aquifer, southern Italy, analysed through stable isotope investigations, 2013, Petrella E. , Celico F.

Mixing of water was analysed in a carbonate aquifer, southern Italy, through stable isotope investigations (18O,δ2H). The input signal (rainwater) was compared with the isotopic content of a 35-meter groundwater vertical profile, over a 1-year period. Within the studied aquifer, recharge and flow are diffuse in a well-connected fissure network.

At the test site, the comparison between input and groundwater isotopic signals illustrates that no efficient mixing takes place in the whole unsaturated zone, between the fresh infiltration water and the stored water.

When analysing the stable isotope composition of groundwater, significant variations were observed above the threshold elevation of 1062 m asl, while a nearly constant composition was observed below the same threshold. Thus, temporal variations in stable isotope composition of rainwater are completely attenuated just in the deeper phreatic zone.

On the whole, taking into consideration also the results of previous studies in the same area, the investigations showed that physical characteristics of the carbonate bedrock, as well as aquifer heterogeneity, are factors of utmost importance in influencing the complete mixing of water. These findings suggest a more complex scenario at catchment scale.


Epikarst Processes, 2013, Bakalowicz, M.

Epikarst forms the interface zone between the infiltration zone and soil and plant cover. It is the superficial part of karst landscapes characterized by a fracturing more developed than in the underlying infiltration zone, because of the action of rock constraints, climate, and plants. The processes at the origin of epikarst are described, as well as those contributing to its destruction. The part played by epikarst in the functioning of karst aquifers is analyzed. 


Aquatic biota of different karst habitats in epigean and subterranean systems of Central Brazil visibility versus relevance of taxa, 2013, Luiza Bertelli Simes, Tnia Cristina Dos Santos Ferreira, Maria Elina Bichuette

The karstic area of São Domingos, central Brazil, holds extensive drainage systems. In order to understand its biodiversity, various volumes of water were filtered with planktonic nets in stretches of subterranean and superficial rivers on five different occasions. We sampled four drips (152L), three calcite pools (368L), two subterranean rivers fed mainly by percolation water (6, 395L), two subterranean rivers fed mainly by water coming from a sinkhole (4, 175L) along different caves, one resurgence (158L), and four epigean rivers (101, 690L). Physical and chemical variables were measured at some sites. Canonical Correlation Analysis was used to verify relationships between taxa and environment. The degree of similarity of the biota was assessed by cluster analysis (Sorensen, single linkage). There were records of exclusive taxa in epigean and subterranean samples, mainly in drips, which harbour the most unique fauna. The high richness of taxa presently recorded reveals the potential of the vadose zone biota in the tropical region, which was neglected in studies on Brazilian subterranean biodiversity. According to our results, the unsaturated zone tropical fauna may have different composition compared to that from temperate habitats. The studied communities were dominated by rotifers, while crustacean are predominant in the latter. The hypothesis can be clarified with the increase of long term studies and taxa identification at species level, besides the use of complementary sampling methods.


Variability of groundwater flow and transport processes in karst under different hydrologic conditions, 2013, Ravbar, Nataša

Significance of hydrological variability in karst is presented, which also discusses factors inducing such variability and consequences it may cause. Groundwater flow in karst aquifers is often characterized by strong variability of flow dynamics in response to different hydrologic conditions within a short time period. Consequently, water table fluctuations are often in the order of tens of meters, differences in flow velocities between low- and high-flow conditions can reach ten or even more times. In dependence to respective hydrologic conditions groundwater flow also results in variations of flow directions, and thus in contribution of different parts of the aquifer to a particular spring. The described hydrological variability has many implications for contaminant transport, groundwater availability and vulnerability. Groundwater level rising reduces thickness of the unsaturated zone and decreases protectiveness of the overlying layers. Higher water flow velocities reduce underground retention. Due to more turbulent flow, transport and remobilization of solute and insoluble matter is more effective. During high-flow conditions there is usually more surface flow and hence more concentrated infiltration underground. Particularly in karst systems that show very high hydrologic variability, this should be considered to correctly characterize, understand or predict the aquifers’ hydrological behaviour and to prepare proper protection strategies.


Using hydrogeochemical and ecohydrologic responses to understand epikarst process in semi-arid systems, Edwards plateau, Texas, USA, 2013, Schwartz Benjamin F. , Schwinning Susanne, Gerrard Brett, Kukowski Kelly R. , Stinson Chasity L. , Dammeyer Heather C.

The epikarst is a permeable boundary between surface and subsurface environments and can be conceptualized as the vadose critical zone of epigenic karst systems which have not developed under insoluble cover. From a hydrologic perspective, this boundary is often thought of as being permeable in one direction only (down), but connectivity between the flow paths of water through the epikarst and the root systems of woody plants means that water moves both up and down across the epikarst. However, the dynamics of these flows are complex and highly dependent on variability in the spatial structure of the epikarst, vegetation characteristics, as well as temporal variability in precipitation and evaporative demand. Here we summarize insights gained from working at several sites on the Edwards Plateau of Central Texas, combining isotopic, hydrogeochemical, and ecophysiological methodologies. 1) Dense woodland vegetation at sites with thin to absent soils (0-30 cm) is in part supported by water uptake from the epikarst. 2) However, tree transpiration typically becomes water-limited in dry summers, suggesting that the plant-available fraction of stored water in the epikarst depletes quickly, even when sustained cave drip rates indicate that water is still present in the epikarst. 3) Flow paths for water that feeds cave drips become rapidly disconnected from the evaporation zone of the epikarst and out of reach for plant roots. 4) Deep infiltration and recharge does not occur in these systems without heavy or continuous precipitation that exceeds some threshold value. Thresholds are strongly correlated with antecedent potential evapotranspiration and rainfall, suggesting control by the moisture status of the epikarst evapotranspiration zone. The epikarst and unsaturated zone in this region can be conceptualized as a variably saturated system with storage in fractures, matrix porosity, and in shallow perched aquifers, most of which is inaccessible to the root systems of trees, although woody vegetation may control recharge thresholds.


Physical Structure of the Epikarst, 2013, Jones, William K.

Epikarst is a weathered zone of enhanced porosity on or near the surface or at the soil/bedrock contact of many karst landscapes. The epikarst is essentially the upper boundary of a karst system but is also a reaction chamber where many organics accumulate and react with the percolating water. The epikarst stores and directs percolating recharge waters to the underlying karst aquifers. Epikarst permeability decreases with depth below the surface. The epikarst may function as a perched aquifer with a saturated zone that transmits water laterally for some distance until it drains slowly through fractures or rapidly at shaft drains or dolines. Stress-release and physical weathering as well as chemical dissolution play a role in epikarst development. Epikarst may be found on freshly exposed carbonates although epikarst that develops below a soil cover should form at a faster rate due to increased carbon dioxide produced by vegetation. The accumulation of soil within the fractures may create plugs that retard the downward movement of percolating water and creates a reservoir rich in organic material. The thickness of the epikarst zone typically ranges from a few meters to 15 meters, but vertical weathering of joints may be much deeper and lead to a “stone forest” type of landscape. Some dolines are hydrologically connected directly to the epikarst while other dolines may drain more directly to the deeper conduit aquifer and represent a “hole” in the epikarst. water stored in the epikarst may be lost to evapotranspiration, move rapidly down vertical shafts or larger joints, or drain out slowly through the soil infillings and small fractures. Much of the water pushed from the epikarst during storms is older water from storage that is displaced by the new event water.


The weathered Carboniferous limestone at Bullslaughter Bay, South Wales: the first example of ghost-rock recorded in the British Isles, 2014, Rowberry Matt D. , Battiauqueney Yvonne, Walsh Peter, Blazejowski Blazej, Boutroumazeilles Viviane, Trentesaux Alain, Krizova Lenka, Griffiths Hywel

The Carboniferous Limestone at Bullslaughter Bay hosts some of the most notable examples of deep weathering in  the British Isles as well as two members of an enigmatic suite of breccias known as the Gash Breccias. The weathered limestone has  been investigated thoroughly in order to identify the process responsible for the weathering. In this paper it is demonstrated that the  weathering is isovolumetric but the weathering profile is not characterised by a vertical gradient and its depth suggests that meteoric  waters did not contribute significantly to the weathering process. The weathered limestone has lost significant amounts of calcium and  parts are virtually decalcified. It is seen that the dominant primary minerals of illite and quartz have been preserved while secondary  clay minerals are generally absent. The weathered limestone cannot be a saprolite sensu stricto as it has been subjected to only restricted  chemical processes. It is, therefore, interpreted as a “ghost-rock”. This type of weathering results from chemical dissolution by slow  moving waters in the saturated zone. It is suggested that the weathering may have taken place during periods of emergence in the  Carboniferous, at the same time as the cyclothem tops were exposed to subaerial modification, as evidenced by omission surfaces and  palaeokarstic solution features. This is the first time that ghost-rock weathering has been reported from the British Isles.


Evaluation of the US DOE’s conceptual model of hydrothermal activity at Yucca Mountain, Nevada, 2014,

A unique conceptual model describing the conductive heating of rocks in the thick unsaturated zone of Yucca Mountain, Nevada by a silicic pluton emplaced several kilometers away is accepted by the US Department of Energy (DOE) as an explanation of the elevated depositional temperatures measured in fluid inclusions in secondary fluorite and calcite. Acceptance of this model allowed the DOE to keep from considering hydrothermal activity in the performance assessment of the proposed high-level nuclear waste disposal facility. The evaluation presented in this paper shows that no computational modeling results have yet produced a satisfactory match with the empirical benchmark data, specifically with age and fluid inclusion data that indicate high temperatures (up to ca. 80 _C) in the unsaturated zone of Yucca Mountain. Auxiliary sub-models complementing the DOE model, as well as observations at a natural analog site, have also been evaluated. Summarily, the model cannot be considered as validated. Due to the lack of validation, the reliance on this model must be discontinued and the appropriateness of decisions which rely on this model must be re-evaluated.A unique conceptual model describing the conductive heating of rocks in the thick unsaturated zone of Yucca Mountain, Nevada by a silicic pluton emplaced several kilometers away is accepted by the US Department of Energy (DOE) as an explanation of the elevated depositional temperatures measured in fluid inclusions in secondary fluorite and calcite. Acceptance of this model allowed the DOE to keep from considering hydrothermal activity in the performance assessment of the proposed high-level nuclear waste disposal facility. The evaluation presented in this paper shows that no computational modeling results have yet produced a satisfactory match with the empirical benchmark data, specifically with age and fluid inclusion data that indicate high temperatures (up to ca. 80 _C) in the unsaturated zone of Yucca Mountain. Auxiliary sub-models complementing the DOE model, as well as observations at a natural analog site, have also been evaluated. Summarily, the model cannot be considered as validated. Due to the lack of validation, the reliance on this model must be discontinued and the appropriateness of decisions which rely on this model must be re-evaluated.


Results 76 to 86 of 86
You probably didn't submit anything to search for