Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That trough is a depression usually on the land surface, but can be found to occur in ground water.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for source (Keyword) returned 854 results for the whole karstbase:
Showing 841 to 854 of 854
Hypogene Sulfuric Acid Speleogenesis and rare sulfate minerals in Baume Galini`ere Cave (Alpes-de-Haute-Provence, France). Record of uplift, correlative cover retreat and valley dissection, 2015, Audra Philippe, Gґazquez Fernando, Rull Fernando, Bigot Jeanyves, Camus Hubert

The oxidation of hydrocarbons and sulfide sources (H2S, pyrite) produces sulfuric acid that strongly reacts with bedrock, causing limestone dissolution and complex interactions with other minerals from the bedrock or from cave fillings, mainly clays. This type of cave development, known as Sulfuric Acid Speleogenesis (SAS), is a subcategory of hypogene speleogenesis, where aggressive water rises from depth. It also produces uncommon minerals, mainly sulfates, the typical byproducts of SAS. Baume Galinière is located in Southern France, in the Vaucluse spring watershed. This small maze cave displays characteristic SAS features such as corrosion notches, calcite geodes, iron crusts, and various sulfate minerals. Sulfur isotopes of SAS byproducts (jarosite and gypsum) clearly show they derive from pyrite oxidation. Using XRD and micro-Raman spectroscopy, thirteen minerals were identified, including elemental sulfur, calcite, quartz, pyrite, goethite, gypsum, fibroferrite, plus all of the six members of the jarosite subgroup (jarosite, argentojarosite, ammoniojarosite, hydroniumjarosite, natrojarosite, plumbojarosite). The Baume Galinière deposits are the first documented cave occurrence of argentojarosite and the second known occurrence of plumbojarosite, hydronium jarosite, ammoniojarosite, and fibroferrite. In the Vaucluse watershed, there were numerous upwellings of deep water along major faults, located at the contact of the karstic aquifer and the overlying impervious covers. The mixing of deep and meteoric waters at shallow depths caused pyrite depositions in numerous caves, including Baume Galinière. Sulfuric acid speleogenesis occurred later after base-level drop, when the cave was under shallow phreatic conditions then in the vadose zone, with oxidation of pyrites generating sulfuric acid. Attenuated oxidation is still occurring through condensation of moisture from incoming air. Baume Galinière Cave records the position of the semi-impervious paleo-cover and documents its retreat in relationship to valley incision caused by uplift and tilting of the Vaucluse block during the Neogene.


Hypogene Sulfuric Acid Speleogenesis and rare sulfate minerals in Baume Galinière Cave (Alpes-de-Haute-Provence, France). Record .., 2015, Audra P. , Gázquez F. , Rull F. , Bigot J. Y. , Camus H.

The oxidation of hydrocarbons and sulfide sources (H2S, pyrite) produces sulfuric acid that strongly reacts with bedrock, causing limestone dissolution and complex interactions with other minerals from the bedrock or from cave fillings, mainly clays. This type of cave development, known as Sulfuric Acid Speleogenesis (SAS), is a subcategory of hypogene speleogenesis, where aggressive water rises from depth. It also produces uncommon minerals, mainly sulfates, the typical byproducts of SAS. Baume Galinière is located in Southern France, in the Vaucluse spring watershed. This small maze cave displays characteristic SAS features such as corrosion notches, calcite geodes, iron crusts, and various sulfate minerals. Sulfur isotopes of SAS byproducts (jarosite and gypsum) clearly show they derive from pyrite oxidation. Using XRD and micro-Raman spectroscopy, thirteen minerals were identified, including elemental sulfur, calcite, quartz, pyrite, goethite, gypsum, and fibroferrite, plus all of the six members of the jarosite subgroup (jarosite, argentojarosite, ammoniojarosite, hydroniumjarosite, natrojarosite, plumbojarosite). The Baume Galinière deposits are the first documented cave occurrence of argentojarosite and the second known occurrence of plumbojarosite, hydronium jarosite, ammoniojarosite, and fibroferrite. In the Vaucluse watershed, there were numerous upwellings of deep water along major faults, located at the contact of the karstic aquifer and the overlying impervious covers. The mixing of deep and meteoric waters at shallow depths caused pyrite depositions in numerous caves, including Baume Galinière. Sulfuric Acid Speleogenesis occurred later after base-level drop, when the cave was under shallow phreatic conditions then in the vadose zone, with oxidation of pyrites generating sulfuric acid. Attenuated oxidation is still occurring through condensation of moisture from incoming air. Baume Galinière Cave records the position of the semi-impervious paleo-cover and documents its retreat in relationship to valley incision caused by uplift and tilting of the Vaucluse block during the Neogene.


International Conference on Groundwater in Karst, Programme and Abstracts, 2015, University of Birmingham, Birmingham, 2015,

Carbonate rocks present a particular challenge to hydrogeologists as the major groundwater flux is through an integrated network of dissolutionally enlarged channels that discharge via discrete springs. The channels span a very wide aperture range: the smallest are little more than micro-fractures or pathways through the rock matrix but at the other end of the spectrum (and commonly in the same rock mass) channels may grow to dimensions where they can be explored by humans and are called caves. Groundwater transmission through the smaller channels that are commonly intersected by boreholes is very slow and has often been analysed using equivalent porous media models although the limitations of such models are increasingly recognised. At the other end of the spectrum (and commonly in the same rock mass) flow through the larger conduits is analogous to ‘a surface stream with a roof’ and may be amenable to analysis by models devised for urban pipe networks. Regrettably, hydrogeologists have too often focussed on the extreme ends of the spectrum, with those carbonates possessing large and spectacular landforms regarded as “karst” whereas carbonates with little surface expression commonly, but incorrectly labelled as “non-karstic”. This can lead to failures in resource management. Britain is remarkable for the variety of carbonate rocks that crop out in a small geographical area. They range in age and type from Quaternary freshwater carbonates, through Cenozoic, Mesozoic and Paleozoic limestones and dolostones, to Proterozoic metacarbonates. All near surface British carbonates are soluble and groundwater is commonly discharged from them at springs fed by dissolutionally enlarged conduits, thereby meeting one internationally accepted definition of karst. Hence, it is very appropriate that Britain, and Birmingham as Britain's second largest city, hosts this International Conference on Groundwater in Karst. The meeting will consider the full range of carbonate groundwater systems and will also have an interdisciplinary approach to understanding karst in its fullest sense.


Turkish karst aquifers, 2015, Gunay G. , Guner N. , Tork K.

One third of Turkey’s surface is underlain by carbonate rocks that have been subdivided into four karst regions. The carbonate rock units are about 200 km wide along the Taurus Mountains that attain elevations of 2500 m. Karst features of western Turkey bordering the Aegean and Mediterranean seas demonstrate the tectonic, lithological and climatic controls on the occurrence, movement, and chemical characteristics of groundwater. In Turkey all karstic feature, such as lapies, caves, sinkholes, uvalas, poljes, ground river valleys developed in all karstic areas. Karstification is related not only to the thickness and to purity of limestone, climate and height but also to tectonic movements. Water resources of karst terrains of Turkey are relatively rich and as such are very important for the economic development of the country. High mountain chains, very often associated with the karst terrains, are responsible for some important and beneficial characteristics of these water resources. Four karst regions are: (1) Taurus karst region, (2) southeast Anatolia karst region, (3) central Anatolia karst region, and (4) northwest Anatolia and Thrace karst regions.


Depth and timing of calcite spar and “spar cave” genesis: Implications for landscape evolution studies, 2015,

Calcite spar (crystals >1 cm in diameter) are common in limestone and dolostone terrains. In the Guadalupe Mountains, New Mexico and west Texas, calcite spar is abundant and lines small geode-like caves. Determining the depth and timing of formation of these large scalenohedral calcite crystals is critical in linking the growth of spar with landscape evolution. In this study, we show that large euhedral calcite crystals precipitate deep in the phreatic zone (400–800 m) in these small geode-like caves (spar caves), and we propose both are the result of properties of supercritical CO2 at that depth. U-Pb dating of spar crystals shows that they formed primarily between 36 and 28 Ma. The 87Sr/86Sr values of the euhedral calcite spar show that the spar has a signifi cantly higher 87Sr/86Sr (0.710–0.716) than the host Permian limestone (0.706–0.709). This indicates the spar formed from waters that are mixed with, or formed entirely from, a source other than the surrounding bedrock aquifer, and this is consistent with hypogene speleogenesis at signifi cant depth. In addition, we conducted highly precise measurements of the variation in nonradiogenic isotopes of strontium, 88Sr/86Sr, expressed as 88Sr, the variation of which has previously been shown to depend on temperature of precipitation. Our preliminary 88Sr results from the spar calcite are consistent with formation at 50–70 °C. Our fi rst U-Pb results show that the spar was precipitated during the beginning of Basin and Range tectonism in a late Eocene to early Oligocene episode, which was coeval with two major magmatic periods at 36–33 Ma and 32–28 Ma. A novel speleogenetic process that includes both the dissolution of the spar caves and precipitation of the spar by the same speleogenetic event is proposed and supports the formation of the spar at 400–800 m depth, where the transition from supercritical to subcritical CO2 drives both dissolution of limestone during the main speleogenetic event and precipitation of calcite at the terminal phase of speleogenesis. We suggest that CO2 is derived from contemporaneous igneous activity. This proposed model suggests that calcite spar can be used for reconstruction of landscape evolution


LIFE AND WATER ON KARST. Monitoring of transboundary water resources of Northern Istria, 2015,

The monograph presents the natural features of Northern Istria, the karst and karst phenomena, karst hydrogeology, ecology and microbiology, and highlights in particular the vulnerability of the karst to various human activities. The main focus of attention is on karst water sources. In assessing their characteristics we used available knowledge of karst water on both sides of the border and supplemented it with new research on the transboundary area in question, which was based on field measurements and sampling, and chemical, microbiological and biological analysis of water. The collected findings form the basis for planning more effective monitoring of the quality of karst water sources, their protection and consequently the improvement of their quality.
 


The current status of mapping karst areas and availability of public sinkhole-risk resources in karst terrains of the United States, 2015,

Subsidence from sinkhole collapse is a common occurrence in areas underlain by water-soluble rocks such as carbonate and evaporite rocks, typical of karst terrain. Almost all 50 States within the United States (excluding Delaware and Rhode Island) have karst areas, with sinkhole damage highest in Florida, Texas, Alabama, Missouri, Kentucky, Tennessee, and Pennsylvania. A conservative estimate of losses to all types of ground subsidence was $125 million per year in 1997. This estimate may now be low, as review of cost reports from the last 15 years indicates that the cost of karst collapses in the United States averages more than $300 million per year. Knowing when a catastrophic event will occur is not possible; however, understanding where such occurrences are likely is possible. The US Geological Survey has developed and main-tains national-scale maps of karst areas and areas prone to sinkhole formation. Several States provide additional resources for their citizens; Alabama, Colorado, Florida, Indiana, Iowa, Kentucky, Minnesota, Missouri, Ohio, and Pennsylvania maintain databases of sinkholes or karst features, with Florida, Kentucky, Missouri, and Ohio providing sinkhole reporting mechanisms for the public.


Hidden sinkholes and karst cavities in the travertine plateau of a highly-populated geothermal seismic territory (Tivoli, central Italy), 2015,

Sinkholes and other karst structures in settled carbonate lands can be a significant source of hazard for humans and human works. Acque Albule, the study area of this work, is a Plio-Pleistocene basin near Rome, central Italy, superficially filled by a large and thick deposit of late Pleistocene thermogene travertine. Human activities blanket large portions of the flat territory covering most evidence from geological surface processes and potentially inducing scientists and public officials to underestimate some natural hazards including those connected with sinkholes. To contribute to the proper assessment of these hazards, a geomorphologic study of the basin was performed using digital elevation models (DEMs), recent aerial photographs, and field surveys. Historical material such as old aerial photographs and past geomorphologic studies both pre-dating the most part of quarrying and village building was also used together with memories of the elderly population. This preliminary study pointed out the presence of numerous potentially active sinkholes that are at present largely masked by either quarrying or overbuilding. Where this first study pointed out the apparent absence of sinkholes in areas characterized by high density of buildings, a detailed subsurface study was performed using properly-calibrated electrical resistivity tomography (ERT) and dynamic penetration measurements (DPSH), together with some borehole logs made available from the local municipality. This second study highlighted the presence of sinkholes and caves that are, this time, substantially hidden to the resolution of standard methods and materials such as aerial photographs, DEMs, and field surveys. Active sinkhole subsidence in the Acque Albule Basin may explain, at least in part, the frequent damages that affect numerous buildings in the area. The main conclusion from this study is that the mitigation of sinkhole hazard in highly populated areas has to pass through a thorough search of (hidden) sinkholes that can be masked by the Anthropocenic molding and blanketing of the territory. For these purposes, data from historical (pre-Anthropocene) documents as well as, where possible, subsurface investigations are fundamental.


Research frontiers in speleogenesis. Dominant processes, hydrogeological conditions and resulting cave patterns, 2015,

Speleogenesis is the development of well-organized cave systems by fluids moving through fissures of a soluble rock. Epigenic caves induced by biogenic CO2 soil production are dominant, whereas hypogenic caves resulting from uprising deep flow not directly connected to adjacent recharge areas appear to be more frequent than previously considered. The conceptual models of epigenic cave development moved from early models, through the “four-states model” involving fracture influence to explain deep loops, to the digital models demonstrating the adjustment of the main flow to the water table. The relationships with base level are complex and cave levels must be determined from the elevation of the vadose-phreatic transitions. Since flooding in the epiphreatic zone may be important, the top of the loops in the epiphreatic zone can be found significantly high above the base level. The term Paragenesis is used to describe the upward development of conduits as their lower parts fill with sediments. This process often records a general baselevel rise. Sediment influx is responsible for the regulation of long profiles by paragenesis and contributes to the evolution of profiles from looping to water table caves. Dating methods allow identification of the timing of cave level evolution. The term Ghost-rock karstification is used to describe a 2-phase process of speleogenesis, with a first phase of partial solution of rock along fractures in low gradient conditions leaving a porous matrix, the ghost-rock, then a second phase of mechanical removing of the ghost-rock mainly by turbulent flow in high gradient conditions opening the passages and forming maze caves. The first weathering phase can be related either to epigenic infiltration or to hypogenic upflow, especially in marginal areas of sedimentary basins. The vertical pattern of epigenic caves is mainly controlled by timing, geological structure, types of flow and base-level changes. We define several cave types as (1) juvenile, where they are perched above underlying aquicludes; (2) looping, where recharge varies greatly with time, to produce epiphreatic loops; (3) water-table caves where flow is regulated by a semi-pervious cover; and (4) caves in the equilibrium stage where flow is transmitted without significant flooding. Successive base-level drops caused by valley entrenchment make cave levels, whereas baselevel rise is defined in the frame of the Per ascensum Model of Speleogenesis (PAMS), where deep passages are flooded and drain through vauclusian springs. The PAMS can be active after any type of baselevel rise (transgression, fluvial aggradation, tectonic subsidence) and explains most of the deep phreatic cave systems except for hypogenic.

The term Hypogenic speleogenesis is used to describe cave development by deep upflow independent of adjacent recharge areas. Due to its deep origin, water frequently has a high CO2-H2S concentration and a thermal anomaly, but not systemati­cally. Numerous dissolution processes can be involved in hypogenic speleogenesis, which often include deep-seated acidic sources of CO2 and H2S, “hydrothermal” cooling, mixing corrosion, Sulfuric Acid Speleogenesis (SAS), etc. SAS particularly involves the condensation-corrosion processes, resulting in the fast expansion of caves above the water table, i.e. in an atmo­spheric environment. The hydrogeological setting of hypogenic speleogenesis is based on the Regional Gravity Flow concept, which shows at the basin scales the sites of convergences and upflows where dissolution focuses. Each part of a basin (mar­ginal, internal, deep zone) has specific conditions. The coastal basin is a sub-type. In deformed strata, flow is more complex according to the geological structure. However, upflow and hypogenic speleogenesis concentrate in structural highs (buried anticlines) and zones of major disruption (faults, overthrusts). In disrupted basins, the geothermal gradient “pumps” the me­teoric water at depth, making loops of different depths and characteristics. Volcanism and magmatism also produce deep hypogenic loops with “hyperkarst” characteristics due to a combination of deep-seated CO2, H2S, thermalism, and microbial activity. In phreatic conditions, the resulting cave patterns

can include geodes, 2–3D caves, and giant ascending shafts. Along the water table, SAS with thermal air convection induces powerful condensation-corrosion and the development of upwardly dendritic caves, isolated chambers, water table sulfuricacid caves. In the vadose zone, “smoking” shafts evolve under the influence of geothermal gradients producing air convectionand condensation-corrosion.

Likely future directions for research will probably involve analytical and modeling methods, especially using isotopes, dating, chemical simulations, and field investigations focused on the relationships between processes and resulting morphologies.


Research frontiers in speleogenesis. Dominant processes, hydrogeological conditions and resulting cave patterns, 2015,

Speleogenesis is the development of well-organized cave systems by fluids moving through fissures of a soluble rock. Epigenic caves induced by biogenic CO2 soil production are dominant, whereas hypogenic caves resulting from uprising deep flow not directly connected to adjacent recharge areas appear to be more frequent than previously considered. The conceptual models of epigenic cave development moved from early models, through the “four-states model” involving fracture influence to explain deep loops, to the digital models demonstrating the adjustment of the main flow to the water table. The relationships with base level are complex and cave levels must be determined from the elevation of the vadose-phreatic transitions. Since flooding in the epiphreatic zone may be important, the top of the loops in the epiphreatic zone can be found significantly high above the base level. The term Paragenesis is used to describe the upward development of conduits as their lower parts fill with sediments. This process often records a general baselevel rise. Sediment influx is responsible for the regulation of long profiles by paragenesis and contributes to the evolution of profiles from looping to water table caves. Dating methods allow identification of the timing of cave level evolution. The term Ghost-rock karstification is used to describe a 2-phase process of speleogenesis, with a first phase of partial solution of rock along fractures in low gradient conditions leaving a porous matrix, the ghost-rock, then a second phase of mechanical removing of the ghost-rock mainly by turbulent flow in high gradient conditions opening the passages and forming maze caves. The first weathering phase can be related either to epigenic infiltration or to hypogenic upflow, especially in marginal areas of sedimentary basins. The vertical pattern of epigenic caves is mainly controlled by timing, geological structure, types of flow and base-level changes. We define several cave types as (1) juvenile, where they are perched above underlying aquicludes; (2) looping, where recharge varies greatly with time, to produce epiphreatic loops; (3) water-table caves where flow is regulated by a semi-pervious cover; and (4) caves in the equilibrium stage where flow is transmitted without significant flooding. Successive base-level drops caused by valley entrenchment make cave levels, whereas baselevel rise is defined in the frame of the Per ascensum Model of Speleogenesis (PAMS), where deep passages are flooded and drain through vauclusian springs. The PAMS can be active after any type of baselevel rise (transgression, fluvial aggradation, tectonic subsidence) and explains most of the deep phreatic cave systems except for hypogenic.

The term Hypogenic speleogenesis is used to describe cave development by deep upflow independent of adjacent recharge areas. Due to its deep origin, water frequently has a high CO2-H2S concentration and a thermal anomaly, but not systemati­cally. Numerous dissolution processes can be involved in hypogenic speleogenesis, which often include deep-seated acidic sources of CO2 and H2S, “hydrothermal” cooling, mixing corrosion, Sulfuric Acid Speleogenesis (SAS), etc. SAS particularly involves the condensation-corrosion processes, resulting in the fast expansion of caves above the water table, i.e. in an atmo­spheric environment. The hydrogeological setting of hypogenic speleogenesis is based on the Regional Gravity Flow concept, which shows at the basin scales the sites of convergences and upflows where dissolution focuses. Each part of a basin (mar­ginal, internal, deep zone) has specific conditions. The coastal basin is a sub-type. In deformed strata, flow is more complex according to the geological structure. However, upflow and hypogenic speleogenesis concentrate in structural highs (buried anticlines) and zones of major disruption (faults, overthrusts). In disrupted basins, the geothermal gradient “pumps” the me­teoric water at depth, making loops of different depths and characteristics. Volcanism and magmatism also produce deep hypogenic loops with “hyperkarst” characteristics due to a combination of deep-seated CO2, H2S, thermalism, and microbial activity. In phreatic conditions, the resulting cave patterns

can include geodes, 2–3D caves, and giant ascending shafts. Along the water table, SAS with thermal air convection induces powerful condensation-corrosion and the development of upwardly dendritic caves, isolated chambers, water table sulfuricacid caves. In the vadose zone, “smoking” shafts evolve under the influence of geothermal gradients producing air convectionand condensation-corrosion.

Likely future directions for research will probably involve analytical and modeling methods, especially using isotopes, dating, chemical simulations, and field investigations focused on the relationships between processes and resulting morphologies.


Research frontiers in speleogenesis. Dominant processes, hydrogeological conditions and resulting cave patterns, 2015,

Speleogenesis is the development of well-organized cave systems by fluids moving through fissures of a soluble rock. Epigenic caves induced by biogenic CO2 soil production are dominant, whereas hypogenic caves resulting from uprising deep flow not directly connected to adjacent recharge areas appear to be more frequent than previously considered. The conceptual models of epigenic cave development moved from early models, through the “four-states model” involving fracture influence to explain deep loops, to the digital models demonstrating the adjustment of the main flow to the water table. The relationships with base level are complex and cave levels must be determined from the elevation of the vadose-phreatic transitions. Since flooding in the epiphreatic zone may be important, the top of the loops in the epiphreatic zone can be found significantly high above the base level. The term Paragenesis is used to describe the upward development of conduits as their lower parts fill with sediments. This process often records a general baselevel rise. Sediment influx is responsible for the regulation of long profiles by paragenesis and contributes to the evolution of profiles from looping to water table caves. Dating methods allow identification of the timing of cave level evolution. The term Ghost-rock karstification is used to describe a 2-phase process of speleogenesis, with a first phase of partial solution of rock along fractures in low gradient conditions leaving a porous matrix, the ghost-rock, then a second phase of mechanical removing of the ghost-rock mainly by turbulent flow in high gradient conditions opening the passages and forming maze caves. The first weathering phase can be related either to epigenic infiltration or to hypogenic upflow, especially in marginal areas of sedimentary basins. The vertical pattern of epigenic caves is mainly controlled by timing, geological structure, types of flow and base-level changes. We define several cave types as (1) juvenile, where they are perched above underlying aquicludes; (2) looping, where recharge varies greatly with time, to produce epiphreatic loops; (3) water-table caves where flow is regulated by a semi-pervious cover; and (4) caves in the equilibrium stage where flow is transmitted without significant flooding. Successive base-level drops caused by valley entrenchment make cave levels, whereas baselevel rise is defined in the frame of the Per ascensum Model of Speleogenesis (PAMS), where deep passages are flooded and drain through vauclusian springs. The PAMS can be active after any type of baselevel rise (transgression, fluvial aggradation, tectonic subsidence) and explains most of the deep phreatic cave systems except for hypogenic.

The term Hypogenic speleogenesis is used to describe cave development by deep upflow independent of adjacent recharge areas. Due to its deep origin, water frequently has a high CO2-H2S concentration and a thermal anomaly, but not systemati­cally. Numerous dissolution processes can be involved in hypogenic speleogenesis, which often include deep-seated acidic sources of CO2 and H2S, “hydrothermal” cooling, mixing corrosion, Sulfuric Acid Speleogenesis (SAS), etc. SAS particularly involves the condensation-corrosion processes, resulting in the fast expansion of caves above the water table, i.e. in an atmo­spheric environment. The hydrogeological setting of hypogenic speleogenesis is based on the Regional Gravity Flow concept, which shows at the basin scales the sites of convergences and upflows where dissolution focuses. Each part of a basin (mar­ginal, internal, deep zone) has specific conditions. The coastal basin is a sub-type. In deformed strata, flow is more complex according to the geological structure. However, upflow and hypogenic speleogenesis concentrate in structural highs (buried anticlines) and zones of major disruption (faults, overthrusts). In disrupted basins, the geothermal gradient “pumps” the me­teoric water at depth, making loops of different depths and characteristics. Volcanism and magmatism also produce deep hypogenic loops with “hyperkarst” characteristics due to a combination of deep-seated CO2, H2S, thermalism, and microbial activity. In phreatic conditions, the resulting cave patterns

can include geodes, 2–3D caves, and giant ascending shafts. Along the water table, SAS with thermal air convection induces powerful condensation-corrosion and the development of upwardly dendritic caves, isolated chambers, water table sulfuricacid caves. In the vadose zone, “smoking” shafts evolve under the influence of geothermal gradients producing air convectionand condensation-corrosion.

Likely future directions for research will probably involve analytical and modeling methods, especially using isotopes, dating, chemical simulations, and field investigations focused on the relationships between processes and resulting morphologies.


Research frontiers in speleogenesis. Dominant processes, hydrogeological conditions and resulting cave patterns, 2015,

Speleogenesis is the development of well-organized cave systems by fluids moving through fissures of a soluble rock. Epigenic caves induced by biogenic CO2 soil production are dominant, whereas hypogenic caves resulting from uprising deep flow not directly connected to adjacent recharge areas appear to be more frequent than previously considered. The conceptual models of epigenic cave development moved from early models, through the “four-states model” involving fracture influence to explain deep loops, to the digital models demonstrating the adjustment of the main flow to the water table. The relationships with base level are complex and cave levels must be determined from the elevation of the vadose-phreatic transitions. Since flooding in the epiphreatic zone may be important, the top of the loops in the epiphreatic zone can be found significantly high above the base level. The term Paragenesis is used to describe the upward development of conduits as their lower parts fill with sediments. This process often records a general baselevel rise. Sediment influx is responsible for the regulation of long profiles by paragenesis and contributes to the evolution of profiles from looping to water table caves. Dating methods allow identification of the timing of cave level evolution. The term Ghost-rock karstification is used to describe a 2-phase process of speleogenesis, with a first phase of partial solution of rock along fractures in low gradient conditions leaving a porous matrix, the ghost-rock, then a second phase of mechanical removing of the ghost-rock mainly by turbulent flow in high gradient conditions opening the passages and forming maze caves. The first weathering phase can be related either to epigenic infiltration or to hypogenic upflow, especially in marginal areas of sedimentary basins. The vertical pattern of epigenic caves is mainly controlled by timing, geological structure, types of flow and base-level changes. We define several cave types as (1) juvenile, where they are perched above underlying aquicludes; (2) looping, where recharge varies greatly with time, to produce epiphreatic loops; (3) water-table caves where flow is regulated by a semi-pervious cover; and (4) caves in the equilibrium stage where flow is transmitted without significant flooding. Successive base-level drops caused by valley entrenchment make cave levels, whereas baselevel rise is defined in the frame of the Per ascensum Model of Speleogenesis (PAMS), where deep passages are flooded and drain through vauclusian springs. The PAMS can be active after any type of baselevel rise (transgression, fluvial aggradation, tectonic subsidence) and explains most of the deep phreatic cave systems except for hypogenic.

The term Hypogenic speleogenesis is used to describe cave development by deep upflow independent of adjacent recharge areas. Due to its deep origin, water frequently has a high CO2-H2S concentration and a thermal anomaly, but not systemati­cally. Numerous dissolution processes can be involved in hypogenic speleogenesis, which often include deep-seated acidic sources of CO2 and H2S, “hydrothermal” cooling, mixing corrosion, Sulfuric Acid Speleogenesis (SAS), etc. SAS particularly involves the condensation-corrosion processes, resulting in the fast expansion of caves above the water table, i.e. in an atmo­spheric environment. The hydrogeological setting of hypogenic speleogenesis is based on the Regional Gravity Flow concept, which shows at the basin scales the sites of convergences and upflows where dissolution focuses. Each part of a basin (mar­ginal, internal, deep zone) has specific conditions. The coastal basin is a sub-type. In deformed strata, flow is more complex according to the geological structure. However, upflow and hypogenic speleogenesis concentrate in structural highs (buried anticlines) and zones of major disruption (faults, overthrusts). In disrupted basins, the geothermal gradient “pumps” the me­teoric water at depth, making loops of different depths and characteristics. Volcanism and magmatism also produce deep hypogenic loops with “hyperkarst” characteristics due to a combination of deep-seated CO2, H2S, thermalism, and microbial activity. In phreatic conditions, the resulting cave patterns

can include geodes, 2–3D caves, and giant ascending shafts. Along the water table, SAS with thermal air convection induces powerful condensation-corrosion and the development of upwardly dendritic caves, isolated chambers, water table sulfuricacid caves. In the vadose zone, “smoking” shafts evolve under the influence of geothermal gradients producing air convectionand condensation-corrosion.

Likely future directions for research will probably involve analytical and modeling methods, especially using isotopes, dating, chemical simulations, and field investigations focused on the relationships between processes and resulting morphologies.


Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), 2017, Dimuccio L. A. , Rodrigues N. , Larocca F. , Pratas J. , Amado A. M. , Batista De Carvalho L. A.

This study examines the geochemical and mineralogical variations in the ferruginous mineralisations that crop out within Grotta della Monaca, which is considered to be the most striking and best known example of a prehistoric iron mine-cave from the southern Apennines (Calabria, Italy). Previous archaeological research identified three local and distinct ancient exploitation phases of these ferruginous mineralisations: (1) an Upper Palaeolithic phase; (2) a Late Neolithic phase; and (3) a post-Medieval phase. These materials, which have various forms of complex mineralogical admixtures and range in colour from yellow-orange to red and darker brown shades, mainly consist of iron oxides/hydroxides (essentially goethite and lepidocrocite), which are often mixed with subordinate and variable amounts of other matrix components (carbonates, sulphates, arsenates, silicates and organic matter). Such ferruginous mineralisations generally correspond to geochemically heterogeneous massive dyke/vein/mammillary/stratiform facies that are exposed within the local caves along open fractures and inclined bedding planes and that partially cover cave wall niches/notches/pockets and ceiling cupolas/holes. Selected samples/sub-samples are analysed through a multi-technique approach with a handheld portable X-ray Fluorescence, X-ray Diffraction, micro-Raman and Fourier Transform Infrared spectroscope (both conventional and attenuated total reflection), which is combined with subsequent multivariate statistical analysis of the elemental concentration data. The geochemical and mineralogical results are used to individualise similar compositional clusters. As expected, the identified groups, each of which has very specific geochemical-mineralogical “fingerprints” and spatial distributions, enable us to identify the sampled ferruginous mineralisations. These specific mineral resources can be compared to similar raw materials that are found in other neighbouring archaeological sites, with obvious implications toward understanding local exploitation strategies through time and the exchanges and kinship networks of these materials.


State of the art of karst vulnerability assessment: overview, evaluation and outlook, 2017,

The study gives an overview of the evolution of the concepts and approaches to karst groundwater vulnerability, its connections to previous vulnerability evaluations and of the steps proposed for the assessment. The majority of the methods are based on prerequisites derived from the basic processes of shallow karst systems in the form of transferred parameters. A systematic survey of existing methods and their applications highlights the significance of scale, parameters, its intrinsic or specific and source or resource nature. Revealing the relationships between methods helps to understand their innovations, advantages, disadvantages and the data need. Based on the literature study, the critical examination of the physical reliability of the resulting vulnerability maps and the necessity of their validation is also highlighted. The paper considers the possible and desirable directions for further research, including the development of process-based methods and involvement of an understanding of the flow and transport processes of karstified carbonates. However, the various aspects of water management are not discussed in the present study.


Results 841 to 854 of 854
You probably didn't submit anything to search for