MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_left.php on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That omnivore is an animal that habitually eats both plants and animals [23]. see also carnivore; herbivore; insectivore.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for tectonics (Keyword) returned 118 results for the whole karstbase:
Showing 106 to 118 of 118
Tektonics of karst massif Chatyrdag in Crimea, 2012,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Yudin V. V.

Different models of the Chatyrdag massif’s structure and tectonic problems of karst are considered in the article. A geodynamic model is substantiated.


Quaternary alluvial sinkholes: Record of environmental conditions of karst development, examples from the Ebro Basin, Spain , 2012,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Soriano M. A. , Luzon A. , Yuste A. , Pocovı, A. , Perez A. , Simon J. L. , Gil H.

The central Ebro Basin is an exceptional region for studying karstification through time and under different environmental conditions, as sinkholes have been developing since the Early Pleistocene. Knowledge of active sinkholes is complemented with research on paleosinkholes and contemporary deposits. Sedimentological, mineralogical, geomorphological and structural approaches permit interpretation of the natural environmental conditions that favored karst in the past and the main genetic mechanisms involved. The sedimentary features of Pleistocene terraces indicate that they were deposited by a gravel braided fluvial system characterized by higher water and sediment availability than today, probably related to meltwater flows coming from glaciated source areas, mainly in the Pyrenees. Genesis of paleosinkholes was mainly linked to this high water supply. Some of them acted as small lakes where fine sediments are exceptionally well conserved to give clues about environmental conditions. The neoformation of palygorskite and sepiolite suggests arid to semiarid climatic conditions, in agreement with the idea of cold glacial episodes. During Pleistocene times, development of sinkholes was influenced by tectonics. Currently, the genesis and evolution of numerous sinkholes are also influenced by water supplies from human activities such as irrigation or urbanization, sharply changing the nearly steady state exhibited in the past


Formation and development of a karstic system below and above sea level in Messinian Mani Peninsula (S. Greece), 2012,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Papadopoulou Vrynioti Kyriaki, Kampolis Isidoros

At the western shores of Messinian Mani Peninsula in South Greece, the composite, integrated karstic system of ‘‘Selinitsa’’ cave and ‘‘Drakos’’ underground river is developed above and below sea-level respectively, in the medium-bedded limestones of the Mani geotectonic unit. The formation and the development of these caves started, most likely, during Middle Pleistocene. Initially, these caves were terrestrial and developed separately. They were connected probably during Holocene through a fi ssure. The development of this united karstic system is controlled by tectonics. ‘‘Selinitsa’’ cave is older than ‘‘Drakos’’. The sequential base levels of karstifi cation demonstrate the continuous sea-level changes during Pleistocene and Holocene, induced by the relative tectonic activity. This united karstic system is characterized by ‘incomplete linkage’ to the sea.


The nature and origin of the ghost-rocks at Bullslaughter Bay, South Wales, 2012,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Rowberry Matt D. , Battiauqueney Yvonne, Blazejowski Blazej, Walsh Peter

The ‘ghost-rocks’ of the British Isles have attracted very little research interest over the years despite being widely distributed. In South Wales, the ghost-rocks of the Pembroke Peninsula are usually associated with the mudrock formations immediately above and below the Carboniferous Limestone. This study focuses on their nature and origin through a detailed investigation of the cliff sections at Bullslaughter Bay. The investigated ghost-rocks are associated with a suite of breccias, collectively termed the Gash Breccias. These are an enigmatic suite of around twenty-five large breccia masses located exclusively in the eastern part of the peninsula. They comprise huge masses of coarse, chaotic, clast-supported, monomictic breccia and represent highly disturbed features in the otherwise unbroken sequences of Carboniferous Limestone. Their origin may be karstic, tectonic, or a combination of the two. They could, theoretically, have formed at any point between the end of the Carboniferous and the Pliocene. If their origin is karstic, it cannot yet be determined if the processes were attributable to per descensum or per ascensum groundwater systems. If tectonic, it is not known whether they formed during periods of compression or extension. From our own geological and geophysical fieldwork, we believe that the breccias originated as a result of subterranean karstic processes whilst retaining an open mind with regard to the role played by tectonics. The breccia and ghost-rocks are both displayed in fine cliff exposures around Bullslaughter Bay. These sections, although not extensive, are extremely instructive. The processes that generate ghost-rock result in isovolumetric weathering of the host rock and an associated loss of density and strength. They may or may not involve the removal of certain chemical constituents in the regolith through solution and hydrolysis followed by the formation of secondary minerals, frequently clay. In reality, the precise weathering process differs according to the type of rock. The process is controlled by the permeability of each rock type in banded rocks such as mudstones or shale with banded chert whereas it is controlled by fissures and faults in homogenous rocks. This control is clearly seen in the Carboniferous Limestone around Bullslaughter Bay, where ghost-rocks are present, more commonly in case of impure or dolomitic limestone. At present, it is not clear whether the groundwater movements were caused by hydrothermal or meteoric processes and this forms the basis of ongoing research. Finally, the study considers the relationship that exists between the ghost-rock and the Gash Breccia. We examine whether there is a logical correlation between the processes that came to generate the ghost-rock and the processes responsible for the generation of the breccia. It may then be possible to accurately state whether the ghost-rock formed before, during, or after, the breccia. The reasons that the ghost-rocks of the British Isles have attracted very little research interest may stem from the fact that they have no current commercial value, have seldom presented engineering problems, and are normally difficult to date. It is clear that numerous karst related sag-subsidences in the British Isles result from the large-scale decalcification of the Carboniferous Limestone (e.g. the Tortonian Brassington Formation of the southern Pennines). There is, however, an increasingly large body of evidence to suggest that these subsidences result from the same processes that generate ghost-rock rather than those that create endokarstic voids. The subsidences may preserve stratigraphical sequences several decametres thick and reach depths and widths of many hectometres. Unfortunately, the masses of decalcified limestone below the Tortonian sediments are of no commercial interest and have hardly ever been penetrated by boreholes. Therefore, we do not know exactly what underlies the karstic fills. The possibility that most of these structures are best explained as the result of per ascensum groundwater flow is discussed.


The Grosmont: the worlds largest unconventional oil reservoir hosted in polyphase-polygenetic karst, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Machel Hans G. , Borrero Mary Luz, Dembicki Eugene, Huebscher Harald4

The Upper Devonian Grosmont platform in Alberta, Canada, is the world’s largest heavy oil reservoir hosted in carbonates, with 400-500 billion barrels of IOIP at an average depth of about 250 – 400 m. Advanced thermal recovery technologies, such as SAGD and electrical in-situ retorting, much higher world market prices for oil and certain political pressures have led to a flurry of activity in the Grosmont since 2006.
The sedimentary stratigraphy of the Grosmont reservoir consists of six stacked car-bonate units interbedded with marls and some evaporites. The latter two originally acted as aquitards during diagenesis but are breached or missing in parts of the area today. Dolomitization by density-driven reflux was the first pervasive diagenetic pro-cess. A dense fracture network was created in three or four phases. Most fractures probably originated from collapse following subsurface salt dissolution and/or from Laramide tectonics far to the west, whereby pulsed crustal loading in the fold-and-thrust belt created a dynamic forebulge in the Grosmont region via multiple pulses of basin-wide crustal flexing, each followed by relaxation. The fracture network probably was reactivated and/or expanded by glacial loading and post-glacial isostatic rebound in the Pleistocene and Holocene, respectively.
The region experienced three or four prolonged periods of epigene karstification, alt-hough there is tangible evidence for only two of them in the Grosmont platform. The first of these episodes was a ‘warm epigene karstification’ during the Jurassic - Creta-ceous, and the second was/is a ‘cold epigene karstification’ that started sometime in the Cenozoic and is continuing to this day. In addition, there is circumstantial evidence for hypogene ‘karstification’ (= dissolution) throughout much of the geologic history of the Grosmont since the Late Devonian. Karstification was accompanied and/or by fol-lowed by extensive hydrocarbon biodegradation.


INCIDENCES OF THE TECTONICS IN THE KARSTIFICATION OF CHALK LIMESTONES IN THE WESTERN PARIS BASIN: EXAMPLE FROM THE PETITES DALES CAVE (SAINT MARTIN AUX BUNEAUX, FRANCE), 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Rodet J. , Ma K. , Viard J. P.

 

The classical approach to study the karstification attributes a major role to the structure in the establishment of concentrated drainage of groundwater. This structure, essentially tectonics and stratigraphy, serves to guide the water, which gradually opens up these discontinuities to build a network, from the introduction to the resurgence. This too idealistic view does not reflect the complexity of the establishment of a karst system. Indeed, experience shows that some bedrocks contain karst drains in the absence of any cracking. What’s more, some conduits can go through the structural elements without undergoing any morphological changes. In the chalk of Western Paris Basin, the Petites Dales Cave proves an excellent observatory. We have conducted a study on the relationship between the main conduit, restitution collector of the underground system, and observable fissures in the roof and walls of the conduit. Along a drain of 421 m, we counted 374 fissures, the total length of which being a little more than 867 m. Examination of the orientation of the drain and fissures reveals four types of relationship: (1) parallel (2) oblique, (3) perpendicular and (4) no joints. No correlation could be established between the development of the collector and the presence of fissures, other than very occasionally or during episodes of overflow. In fact, the relationship between fissure and karstic conduit cannot be established, therefore it is necessary to introduce other factors in the speleogenesis, such as porosity of the chalky bedrocks, and the direct effect of the hydraulic gradient.


FLANK MARGIN CAVES ON A PASSIVE CONTINENTAL MARGIN: NARACOORTE AND OTHER SOUTHERN AUSTRALIAN EXAMPLES, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
White Susan

 

Flank margin caves (FMC) have been predominantly described on carbonate islands such as in the Bahamas or the Marianas, using the Island Karst Model. This model has been used to explain karst development on young carbonate islands with poorly cemented eolianites, which differ substantially from continental karst, formed in well cemented limestones. Karst on continental margins especially the southern Australian coast, are not in well cemented telogenic rocks but in highly porous, highly permeable marine and eolian calcarenites. The gradual uplift over the past 50 Ma of the southern edge of the continent has resulted in Flank Margin Caves which formed in a coastal setting, being positioned significantly further inland and reflect the neotectonics of the Southern Australian passive continental margin rather than solely the Pleistocene glacio/eustatic sealevel fluctuations. The inter-relationship of tectonic setting, the distinctive characteristics of FMC and the speleogenesis of coastal karst assists in the understanding of the karst landscape evolution of significant karst areas of southern Australia.


Integration of Seismic-Reflection and Well Data to Assess the Potential Impact of Stratigraphic and Structural Features on Sustainable Water Supply from the Floridan Aquifer System, Broward County, Florida, 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Cunningham, K. J.

The U.S. Geological Survey and Broward County water managers commenced a 3.5-year cooperative study in July 2012 to refine the geologic and hydrogeologic framework of the Floridan aquifer system (FAS) in Broward County. A lack of advanced stratigraphic knowledge of the physical system and structural geologic anomalies (faults and fractures originating from tectonics and karst-collapse structures) within the FAS pose a risk to the sustainable management of the resource.

The principal objective of the study is to better define the regional stratigraphic and structural setting of the FAS in Broward County. The objective will be achieved through the acquisition, processing, and interpretation of new seismic-reflection data along several canals in Broward County. The interpretation includes integration of the new seismic-reflection data with existing seismic-reflection profiles along Hillsboro Canal in Broward County and within northeast Miami-Dade County, as well as with data from nearby FAS wellbores. The scope of the study includes mapping the geologic, hydrogeologic, and seismic-reflection framework of the FAS, and identifying stratigraphic and structural characteristics that could either facilitate or preclude the sustainable use of the FAS as an alternate water supply or a treated effluent repository. In addition, the investigation offers an opportunity to: (1) improve existing groundwater flow models, (2) enhance the understanding of the sensitivity of the groundwater system to well-field development and upconing of saline fluids, and (3) support site selection for future FAS projects, such as Class I wells that would inject treated effluent into the deep Boulder Zone.


The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , 2014,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Briestensky Milos, Stemberk Josef, Rowberry Matt D. ,

The EU-TecNet fault displacement monitoring network records three-dimensional displacements across specifically selected tectonic structures within the crystalline basement of central Europe. This paper presents a study of recent and active tectonics at Západní Cave in northern Bohemia (Czech Republic). It extends previous geological research by measuring speleothem damage in the cave and monitoring displacements across two fault structures situated within the Lusatian Thrust Zone. The speleothem damage reflects strike-slip displacement trends: the WSW-ENE striking fault is associated with dextral strike-slip displacement while the NNW-SSE striking fault is associated with sinistral strike-slip displacement. These measurements demonstrate that the compressive stress σ1 is located in the NW or SE quadrant while the tensile stress σ3 is oriented perpendicular to σ1, i.e. in the NE or SW quadrant. The in situ fault displacement monitoring has confirmed that movements along the WSW-ENE striking fault reflect dextral strike-slip while movements along the NNW-SSE striking fault reflect sinistral strike-slip. In addition, however, monitoring across the NNW-SSE striking fault has demonstrated relative vertical uplift of the eastern block and, therefore, this fault is characterised by oblique movement trends. The fault displacement monitoring has also shown notable periods of increased geodynamic activity, referred to as pressure pulses, in 2008, 2010-2011, and 2012. The fact that the measured speleothem damage and the results of fault displacement monitoring correspond closely confirms the notion that, at this site, the compressive stress σ1 persists in the NW or SE quadrant. The presented results offer an insight into the periodicity of pressure pulses, demonstrate the need for protracted monitoring periods in order to better understanding geodynamic processes, and show that it is possible to characterise the displacements that occur across individual faults in a way that cannot be accomplished from geodetic measurements obtained by Global Navigation Satellite Systems.


TECTONIC CONTROL OF CAVE DEVELOPMENT: A CASE STUDY OF THE BYSTRA VALLEY IN THE TATRA MTS., POLAND, 2015,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943

Tectonic research and morphologi calobservations were carried out in six caves (Kalacka, Goryczkowa, Kasprowa Ni¿na, Kasprowa OErednia, Kasprowa Wy¿nia and Magurska) in the Bystra Val ley, in the Tatra Moun -tains. There are three cave lev els, with the youn gest ac tive and the other two in ac tive, re flect ing de vel op ment partly un der epiphreatic and partly un der phreatic con di tions. These stud ies dem on strate strong con trol of the cave pat tern by tec tonic fea tures, in clud ing faults and re lated frac tures that orig i nated or were re ju ve nated dur ing up lift,last ing from the Late Mio cene. In a few lo cal cases, the cave pas sages are guided by the com bined in flu ence of bed ding, joints and frac tures in the hinge zone of a chev ron anticline. That these cave pas sages are guided by tec tonic struc tures, ir re spec tive of lithological dif fer ences, in di cates that these proto-con duits were formed by “tec tonic in cep tion”. Dif fer ences in the cave pat tern be tween the phreatic and epiphreatic zones at a given cave level may be a re sult of mas sif re lax ation. Be low the bot tom of the val ley, the ef fect of stress on the rock mass is re lated to the re gional stress field and only in di vid ual faults ex tend be low the bot tom of the val ley. Thus in the phreatic zone, the flow is fo cused and a sin gle con duit be comes en larged. The lo cal ex ten sion is more in tense in the epiphreatic zone above the val ley floor and more frac tures have been suf fi ciently ex tended to al low wa ter to flow. The wa ter mi grates along a net work of fis sures and a maze could be form ing. Neotectonic dis place ments (of up to 15 cm), which are more re cent than the pas sages, were also iden ti fied in the caves. Neotectonic ac tiv ity is no lon ger be lieved to have as great an im pact on cave mor phol ogy as pre vi ously was thought. Those faults with dis place ments of sev eral metres, de scribed as youn ger than the cave by other au thors, should be re clas si fied as older faults, the sur faces of which have been ex posed by speleogenesis. The pos si ble pres ence of neotectonic faults with greater dis place ments is not ex cluded, but they would have had a much greater mor pho log i cal im pact than the ob served fea tures sug gest.


Tectonic control of cave development: a case study of the Bystra Valley in the Tatra Mts., 2015,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Szczygieł Jacek, Gaidzik Krzysztof, Kicińska Ditta

Tectonic research and morphological observations were carried out in six caves (Kalacka, Goryczkowa, Kasprowa Niżna, Kasprowa Średnia, Kasprowa Wyżnia and Magurska) in the Bystra Valley, in the Tatra Mountains. There are three cave levels, with the youngest active and the other two inactive, reflecting development partly under epiphreatic and partly under phreatic conditions. These studies demonstrate strong control of the cave pattern by tectonic features, including faults and related fractures that originated or were rejuvenated during uplift, lasting from the Late Miocene. In a few local cases, the cave passages are guided by the combined influence of bedding, joints and fractures in the hinge zone of a chevron anticline. That these cave passages are guided by tectonic structures, irrespective of lithological differences, indicates that these proto-conduits were formed by "tectonic inception”. Differences in the cave pattern between the phreatic and epiphreatic zones at a given cave level may be a result of massif relaxation. Below the bottom of the valley, the effect of stress on the rock mass is related to the regional stress field and only individual faults extend below the bottom of the valley. Thus in the phreatic zone, the flow is focused and a single conduit becomes enlarged. The local extension is more intense in the epiphreatic zone above the valley floor and more fractures have been sufficiently extended to allow water to flow. The water migrates along a network of fissures and a maze could be forming. Neotectonic displacements (of up to 15 cm), which are more recent than the passages, were also identified in the caves. Neotectonic activity is no longer believed to have as great an impact on cave morphology as previously was thought. Those faults with displacements of several metres, described as younger than the cave by other authors, should be reclassified as older faults, the surfaces of which have been exposed by speleogenesis. The possible presence of neotectonic faults with greater displacements is not excluded, but they would have had a much greater morphological impact than the observed features suggest.


Quaternary faulting in the Tatra Mountains, evidence from cave morphology and fault-slip analysis, 2015,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Szczygieł Jacek

Tectonically deformed cave passages in the Tatra Mts (Central Western Carpathians) indicate some fault activity during the Quaternary. Displacements occur in the youngest passages of the caves indicating (based on previous U-series dating of speleothems) an Eemian or younger age for those faults, and so one tectonic stage. On the basis of stress analysis and geomorphological observations, two different mechanisms are proposed as responsible for the development of these displacements. The first mechanism concerns faults that are located above the valley bottom and at a short distance from the surface, with fault planes oriented sub-parallel to the slopes. The radial, horizontal extension and vertical σ1 which is identical with gravity, indicate that these faults are the result of gravity sliding probably caused by relaxation after incision of valleys, and not directly from tectonic activity. The second mechanism is tilting of the Tatra Mts. The faults operated under WNW-ESE oriented extension with σ1 plunging steeply toward the west. Such a stress field led to normal dip-slip or oblique-slip displacements. The faults are located under the valley bottom and/or opposite or oblique to the slopes. The process involved the pre-existing weakest planes in the rock complex: (i) in massive limestone mostly faults and fractures, (ii) in thin-bedded limestone mostly inter-bedding planes. Thin-bedded limestones dipping steeply to the south are of particular interest. Tilting toward the N caused the hanging walls to move under the massif and not toward the valley, proving that the cause of these movements was tectonic activity and not gravity.


Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), 2015,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Briestensky Milos, Rowberry Matt, Stemberk Josef, Stefanov Petar, Vozar Jozef, Sebela Stanka, Petro Lubomir, Bella Pavel, Gaal Ludovit, Ormukov Cholponbek,

The EU-TecNet monitoring network uses customised three-dimensional extensometers to record transient deformations across individual faults. This paper presents the first results from two newly established monitoring points in the Balkan Mountains in Bulgaria. The data from Saeva Dupka, recorded across an EEN-WWS striking fault, show sinistral strike-slip along the fault and subsidence of the southern block. Much of the subsidence occurred around the time of the distal MW = 5.6 Pernik Earthquake. An important transient deformation event, which began in autumn 2012, was reflected by significant compression and subsequent extension across the monitored fault. The data from Bacho Kiro, recorded across a NE-SW striking fault, show sinistral strike-slip along the fault and subsidence of the northwestern block. The same important deformation event was reflected by changes in the strike-slip, dip-slip, and horizontal opening/closing trends. These results have been compared to data from other monitoring points in the Western Carpathians, External Dinarides, and Tian Shan. Many of the sites evidence simultaneous displacement anomalies and this observation is interpreted to reflect the widespread propagation of a tectonic pressure pulse towards the end of 2012.


Results 106 to 118 of 118
You probably didn't submit anything to search for