MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_left.php on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That spongework cave pattern is a complex maze cave pattern consisting of irregular interconnecting cavities with intricate perforation of the rock. the cavities may be large or small. all spongework patterns are non-branching in development and contain profuse travertine. in map view, these caves often appear as an irregular ink blot.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for kentucky (Keyword) returned 143 results for the whole karstbase:
Showing 121 to 135 of 143
A Taxonomic Survey of Lamp Flora (Algae and Cyanobacteria) in Electrically Lit Passages within Mammoth Cave National Park, Kentucky., 2007,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Smith Thomas, Olson Rick
A taxonomic survey of the lamp flora from electrically lit passages in Mammoth Cave, Mammoth Cave National Park, identified 28 species. Overall, cyanobacteria were dominant represented by 14 species (50% of the total), green algae had eight species (29%), and six diatoms species (21%) were present. There was not a correlation between species diversity and temperature, but there is a general trend of increasing diversity with warmer temperatures. There were two algal or cyanobacterial species identified in this study that overlapped with previous studies. There is a lack of continuity between previous studies only having one species identified in more than one study. This suggests a high algal turnover and possible colonization rates.

A Taxonomic Survey of Lamp Flora (Algae and Cyanobacteria) in Electrically Lit Passages within Mammoth Cave National Park, Kentucky, 2007,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Smith Thomas, Olson Rick
A taxonomic survey of the lamp flora from electrically lit passages in Mammoth Cave, Mammoth Cave National Park, identified 28 species. Overall, cyanobacteria were dominant represented by 14 species (50% of the total), green algae had eight species (29%), and six diatoms species (21%) were present. There was not a correlation between species diversity and temperature, but there is a general trend of increasing diversity with warmer temperatures. There were two algal or cyanobacterial species identified in this study that overlapped with previous studies. There is a lack of continuity between previous studies only having one species identified in more than one study. This suggests a high algal turnover and possible colonization rates.

Benchmark Papers in Karst Science, 2007,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
A collection of benchmark papers in karst science: The Decade 1971 ? 1980 13. The Geochemistry of Some Carbonate Ground Waters in Central Pennsylvania, D. Langmuir 14. Genetic Interpretation of Regressive Evolutionary Processes: Studies on Hybrid Eyes of Two Astyanax Cave Populations (Characidae, Pisces), H. Wilkins 15. Cavernicoles in Lava Tubes on the Island of Hawaii, F.G. Howarth 16. Evolutionary Genetics of Cave-Dwelling Fishes of the Genus Astyanax, J.C. Avise and R.L. Selander 17. Deducing Flow Velocity in Cave Conduits from Scallops, R.L. Curl 18. The Origin of Maze Caves, A.N. Palmer 19. Foraging by Cave Beetles: Spatial and Temporal Heterogeneity of Prey, T.C. Kane and T.L. Poulson 20. Considerations of the Karst Ecosystem, R. Rouch 21. Diffuse Flow and Conduit Flow in Limestone Terrain in the Mendip Hills, Somerset (Great Britain), T.C. Atkinson 22. The Development of Limestone Cave Systems in Dimensions of Length and Depth, D.C. Ford and R.O. Ewers The Decade 1981 ? 1990 23. Magnetostratigraphy of Sediments in Mammoth Cave, Kentucky, V.A. Schmidt 24. Uranium-Series Ages of Speleothem from Northwest England: Correlations with Quaternary Climate, M. Gascoyne, D.C. Ford and H.P. Schwarcz 25. Analysis and Interpretation of Data from Tracer Tests in Karst Areas, W.K. Jones 26. Evolution of Adult Morphology and Life-History Characters in Cavernicolous Ptomaphagus Beetles, S.B. Peck 27. Ecology of the Mixohaline Hypogean Fauna along the Yugoslav Coasts, B. Sket 28. Fractal Dimensions and Geometries of Caves, R.L. Curl 29. Regional Scale Transport in a Karst Aquifer. 1. Component Separation of Spring Flow Hydrographs, S.J. Dreiss 30. Morphological Evolution of the Amphipod Gammarus minus in Caves: Quantitative Genetic Analysis, D.W. Fong 31. The Flank Margin Model for Dissolution Cave Development in Carbonate Platforms, J.E. Mylroie and J.L. Carew 32. Sulfuric Acid Speleogenesis of Carlsbad Cavern and Its Relationship to Hydrocarbons, Delaware Basin, New Mexico and Texas, C.A. Hill The Decade 1991 ? 2000 33. Origin and Morphology of Limestone Caves, A.N. Palmer 34. How Many Species of Troglobites Are There? D.C. Culver and J.R. Holsinger 35. Annual Growth Banding in a Cave Stalagmite, A. Baker, P.L. Smart, R.L. Edwards and D.A. Richards 36. Natural Environment Change in Karst: The Quaternary Record, S.-E. Lauritzen 37. Pattern and Process in the Biogeography of Subterranean Amphipods, J.R. Holsinger 38. A Chemoautotrophically Based Cave Ecosystem, S.M. Sarbu, T.C. Kane and B.K. Kinkle 39. Rhodopsin Evolution in the Dark, K.A. Crandall and D.M. Hillis 40. Climate and Vegetation History of the Midcontinent from 75 to 25 ka: A Speleothem Record from Crevice Cave, Missouri, USA, J.A. Dorale, R.L. Edwards, E. Ito and L.A. González

A Taxonomic Survey of Lamp Flora (Algae and Cyanobacteria) in Electrically Lit Passages within Mammoth Cave National Park, Kentucky, 2007,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Smith T. , Olson R.

A taxonomic survey of the lamp flora from electrically lit passages in Mammoth Cave, Mammoth Cave National Park, identified 28 species. Overall, cyanobacteria were dominant represented by 14 species (50% of the total), green algae had eight species (29%), and six diatoms species (21%) were present. There was not a correlation between species diversity and temperature, but there is a general trend of increasing diversity with warmer temperatures. There were two algal or cyanobacterial species identified in this study that overlapped with previous studies. There is a lack of continuity between previous studies only having one species identified in more than one study. This suggests a high algal turnover and possible colonization rates


Great Caves of the World, 2008,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Waltham, Tony

A short general introduction, then large photographs and short texts on 28 of the world's great caves, each one selected for some special feature of its geology, geomorhology, biology or history. Sof Omar (Ethiopia); Sterkfontein (South Africa); Castleguard (Canada); Mammoth (Kentucky); Lechuguillaand Carlsbad (New Mexico); Kazumura (Hawaii); Villa Luzand Sac Actun (Mexico); Quashies River (Jamaica); Janelao (Brazil); Pinega (Russia); Krubera (Georgia); Tri Nahacu (Iran); Difeng (China); Akiyoshi (Japan); Hinboun (Laos); Perak Tong and Mulu (Malaysia); Nare (Papua New Guinea); Nullarbor (Australia); Waitomo (New Zealand); Gaping Gill (England); Chauvet and Berger (France); Alpine Ice Caves (Austria); Skocjanske and Krizna (Slovenia).


Entomopathogenic fungi carried by the cave orb weaver spider, Meta ovalis (Araneae, Tetragnathidae), with implications for mycoflora transer to cave crickets, 2009,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Yoder J. A. , Benoit J. B. , Christensen B. S. , Croxall T. J. , And Hobbs Iii H. H.
We report the presence of the entomopathogenic fungi, Beauveria spp. and Paecilomyces spp., associated with female adults of the cave orb weaver spider, Meta ovalis, from Laurel Cave (Carter Cave State Resort Park, Carter Co., Kentucky). There was also an abundance of saprophytic Aspergillus spp., Mucor spp., Penicillium spp., Rhizopus spp., and to a lesser extent, Absidia spp., Cladosporium spp., Mycelia sterilia, and Trichoderma spp. These are mostly saprobes that reflect the mycoflora that are typical of the cave environment. Incubation at 25 uC resulted in increased growth of all fungi compared to growth at 12 uC (cave conditions) on each of four different kinds of culture media, indicating that the cave environment is suppressive for the growth of these fungi. Topically-applied inocula of Beauveria sp. and Paecilomyces sp. (spider isolates) were not pathogenic to M. ovalis, but these fungi were pathogenic to the cave cricket, Hadenoecus cumberlandicus. One possibility is that the Beauveria spp. and Paecilomyces spp. carried by M. ovalis could negatively impact the survival of cave crickets that co- occur with these spiders, thus possibly altering the ecological dynamics within the caves.

Diagnostic hydrogeologic characteristics of a karst aquifer (Kentucky, USA) , 2009,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Worthington, Stephen R. H.


Estimating the Timing of Cave Level Development with GIS, 2011,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Jacoby B. S. , Peterson E. W. , Dogwiler T. , Kostelnick J C.

Identifying cave levels provides insight into cave development and climatic changes that have affected a karst system over time. Cosmogenic dating has been used to interpret levels in Mammoth Cave and the Cumberland Plateau. This absolute dating technique has proven successful in determining cave paleoclimates and regional geomorphic history, but is expensive. The study presented here is a preliminary method to cosmogenic dating that can outline a region’s speleogenesis using a Geographic Information System (GIS) and published denudation rates. The Carter Cave system in northeastern Kentucky is within the karst landscape found along the western edge of the Appalachians and contains multiple daylighted caves at various elevations along valley walls. These characteristics make the Carter Caves an ideal location to apply GIS to cave level identification and evolution as described by Jacoby et al. (in review), who identified the cave levels within the area. The authors concluded that an argument can be made for either four or five cave levels in the Carter Cave system; however, studies identified four levels in both Mammoth Cave and the Cumberland Plateau. Further analysis indicated that the fifth level formed as a result of a change in lithology rather than an event that influenced the local base level. This research is an extension of the conclusions presented by Jacoby et al. (in review). The GIS was used to calculate the volume of surficial material lost within each level as a result of degradational geomorphic processes. Then, level thickness lost and published denudation rates were used to calculate the relative time required to form each level. There was not one denudation rate applicable to each level within the cave system, but the rates varied between 12 m/Ma and 40 m/Ma. This study concludes that the cave system took between 3.4 and 5.7 Ma to form. This study did not perform an absolute dating of cave sediments or assess any detailed stratigraphic influence.


Identifying the Stream Erosion Potential of Cave Levels in Carter Cave State Resort Park, Kentucky, USA, 2011,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Jacoby B. S. , Peterson E. W. , Dogwiler T.

Cave levels, passages found at similar elevations and formed during the same constant stream base level event, reveal information about paleoclimates and karst geomorphology. The investigation presented here examines how Stream Power Index (SPI) relates to cave levels. The study area, Carter Caves State Resort Park (CCSRP), is a fluviokarst system in northeastern Kentucky containing multiple cave levels. SPI determines the erosive power overland flow based on the assumption that flow accumulation and slope are proportional to potential for sediment entrainment. Part of this digital terrain analysis requires the creation of a flow accumulation raster from a digital elevation model (DEM). In creating the flow accumulation raster, one has the option to fill depressions (also considered errors) within the DEM. Filling these depressions, or “sinks,” creates a well-connected stream network; however it also removes possible sinkholes from the DEM. This paper also investigates the effects a filled and an unfilled DEM have on SPI and what each reveals about erosion potential in the area. The data shows that low elevations within the filled DEM maintain a high SPI value when compared to the unfilled DEM. The filled DEM also created a stream network similar to reality. The unfilled DEM demonstrated similar SPI results between all levels, indicating a well-connected karst system. In order to truly understand the mechanics of this system, a combination of these two DEMs is required.


Development of a Specific Quantitative Real-Time PCR Assay to Monitor Chlorella DNA: A Case Study from Mammoth Cave National Park, Kentucky, USA , 2011,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Fowler, Richard F.

Estimates of phytoplankton abundance are important parameters
watched by stewards of water quality and freshwater ecology in rivers, streams, and reservoirs. A targeted phytoplankton assay
for Chlorella DNA was developed to estimate the abundance of the predominant species of green algae in surface waters of Mammoth Cave National Park (MACA) in Kentucky, USA. The phytoplankton community in the Green River in MACA has been shown to consist of 95% Chlorella sp. (Wullschlegger et al., 2003). Chlorella 18S rRNA gene sequences were amplified and quantified using Quantitative Real-Time PCR (qPCR) with primers
specific for the family Chlorellaceae in the class Trebouxiophyceae,
order Chlorellales. Concentrations of Chlorella DNA in river water samples were measured by comparison to a standard curve generated by DNA extracted from a live laboratory culture of C. vulgaris. DNA isolated from other sources including bacteria,
amoebae, fungi, decapods, insects, cave sediment, and a different
green alga, Chlamydomonas, produced no PCR products and thus did not interfere with the detection and quantification of Chlorella DNA. The assay proved quantitative over more than four orders of magnitude with a method detection limit (MDL) of approximately 2.3 x104 cells/L. Presence or absence of Chlorella
DNA could be demonstrated at concentrations ten to 100 times lower than the calculated MDL. Chlorella was detected in lampenflora samples from three tourist trails, and Chlorella was absent from sediment samples off tourist trails that were known to contain high concentrations of bacterial DNA. Demonstration of the utility of the technique was illustrated by a case study in Mammoth Cave National Park to determine Chlorella concentrations
at various sampling sites of karst surface streams where invasive zebra mussels are a threat to native species.


Influence of Karst Landscape on Planetary Boundary Layer Atmosphere: A Weather Research and Forecasting (WRF) ModelBased Investigation, 2011,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Leeper R. Mahmood R, Quintanar A. I.

Karst hydrology provides a unique set of surface and subsurface hydrological components that affect soilmoisture variability. Over karst topography, surface moisture moves rapidly below ground via sink holes,vertical shafts, and sinking streams, reducing surface runoff and moisture infiltration into the soil. In addition,subsurface cave blockage or rapid snowmelt over karst can lead to surface flooding. Moreover, regionsdominated by karst may exhibit either drier or wetter soils when compared to nonkarst landscape. However,because of the lack of both observational soil moisture datasets to initialize simulations and regional landsurface models (LSMs) that include explicit karst hydrological processes, the impact of karst on atmosphericprocesses is not fully understood. Therefore, the purpose of this study was to investigate the importance ofkarst hydrology on planetary boundary layer (PBL) atmosphere using the Weather Research and ForecastingModel (WRF). This research is a first attempt to identify the impacts of karst on PBL. To model the influenceof karst hydrology on atmospheric processes, soil moisture was modified systematically over the WesternKentucky Pennyroyal Karst (WKYPK) region to produce an ensemble of dry and wet anomaly experiments.Simulations were conducted for both frontal- and nonfrontal-based convection. For the dry ensemble, cloudcover was both diminished downwind of karst because of reduced atmospheric moisture and enhanced slightlyupwind as moist air moved into a region of increased convection compared to control simulations (CTRL).Moreover, sensible (latent) heat flux and PBL heights were increased (decreased) compared to CTRL. Inaddition, the wet ensemble experiments reduced PBL heights and sensible heat flux and increased cloud coverover karst compared to CTRL. Other changes were noted in equivalent potential temperature (ue) andvertical motions and development of new mesoscale circulation cells with alterations in soil moisture overWKYPK. Finally, the location of simulated rainfall patterns were altered by both dry and wet ensembles withthe greatest sensitivity to simulated rainfall occurring during weakly forced or nonfrontal cases. Simulatedrainfall for the dry ensemble was more similar to the North American Regional Reanalysis (NARR) thanCTRL for the nonfrontal case. Furthermore, the initial state of the atmosphere and convective triggers werefound to either enhance or diminish simulated atmospheric responses


Using Geographic Information System to Identify Cave Levels and Discern the Speleogenesis of the Carter Caves Karst Area, Kentucky, 2011,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Peterson E. , Dogwiler T. , Harlan L.

Cave level delineation often yields important insight into the speleogenetic history of a karst system. Various workers in the Mammoth Cave System (MCS) and in the caves of the Cumberland Plateau Karst (CPK) have linked cave level development in those karst systems with the Pleistocene evolution of the Ohio River. This research has shown that speleogenesis was closely related to the base level changes driven by changes in global climate. The Carter Caves Karst (CCK) in northeastern Kentucky has been poorly studied relative to the MCS to the west and the CPK karst to the east. Previously, no attempt had been made to delineate speleogenetic levels in the CCK and relate them to the evolution of the Ohio River. In an attempt to understand cave level development in CCK we compiled cave entrance elevations and locations. The CCK system is a fluviokarst typical of many karst systems formed in the Paleozoic carbonates of the temperate mid-continent of North America. The CCK discharges into Tygarts Creek, which ultimately flows north to join the Ohio River. The lithostratigraphic context of the karst is the Mississippian Age carbonates of the Slade Formation. Karst development is influenced by both bedding and structural controls. We hypothesize that cave level development is controlled by base level changes in the Ohio River, similar to the relationships documented in MCS and the karst of the Cumberland Plateau The location and elevation of cave entrances in the CCK was analyzed using a GIS and digital elevation models (DEMs). Our analysis segregated the cave entrances into four distinct elevation bands that we are interpreting as distinct cave levels. The four cave levels have mean elevations (relative to sea level) of 228 m (L1), 242 m (L2), 261 m (L3), and 276 m (L4). The highest level—L4—has an average elevation 72 m above the modern surface stream channel. The lowest level—L1—is an average of 24 m above the modern base level stream, Tygarts Creek. The simplest model for interpreting the cave levels is as a response to an incremental incision of the surface streams in the area and concomitant adjustment of the water table elevation. The number of levels we have identified in the CCK area is consistent with the number delineated in the MCS and CPK. We suggest that this points toward the climatically-driven evolution of the Ohio River drainage as controlling the speleogenesis of the CCK area 


Observations on the biology of the endangered stygobiotic shrimp Palaemonias alabamae, with notes on P. ganteri (Decapoda: Atyidae), 2011,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Martha Cooper, John Cooper

Palaemonias alabamae is endemic to subterranean waters in northern Alabama. Its type locality is Shelta Cave, Madison County, and ostensibly conspecifi c shrimps have been found in Bobcat and two other caves. Pollution and other factors may have extirpated the shrimp from the type locality. In Shelta Cave the species is smaller than the shrimp in Bobcat Cave and P. ganteri in Mammoth Cave, Kentucky. Adult female P. alabamae(s.s.) and P. ganteri are larger than males. Female P. alabamae with visible oocytes or, rarely, attached ova, were observed from July through January in Shelta Cave. Each female there produces 8 to 12 large ova, whereas females of the population in Bobcat Cave produce 20 to 24 ova, and P. ganteri produces 14 to 33 ova. Plankton samples taken in Shelta and Mammoth caves yielded nothing identifi able as zoea or postlarvae.Palaemonias alabamae and P. ganteri usually feed by fi ltering bottom sediments through their mouthparts, but both sometimes feed upside down at the water’s surface. Although there is some overlap, the compositions of the aquatic communities in Shelta and Mammoth caves differ, and there are some major differences among the Alabama shrimp caves. The stygobiotic fi sh, Typhlichthys subterraneus, is a known predator on P. alabamae in Shelta Cave.


Cosmogenic Isotope Dating of Cave Sediments, 2012,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Granger Darryl E. , Fabel Derek

The decay of cosmic ray-induced 26Al and 10Be in quartz sediments allows the calculation of sediment emplacement ages back to about five million years. Two examples are given: Mammoth Cave (Kentucky) and Atapuerca Cave (Spain). The sediments in the Mammoth Cave System were an integral part of how the cave was formed. The sediments reveal the evolution of the cave system, and how cave development is tightly coupled to river incision and aggradation. In this case, Mammoth Cave was ideal because it was a water-table cave that carried quartz from local bedrock. In contrast, Atapuerca is a sedimentary infill where sediment (and animals) fell into a preexisting cavity. Such cave infills are the norm in archaeology and paleoanthropology because they collect bones and artifacts over long periods of time. In this case, the cosmogenic nuclides dated the sedimentary infill rather than the cave itself.


Mammoth Cave System, Kentucky, 2012,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Brucker, Roger W.

Mammoth Cave System is located about 160 km (100 miles) south of Louisville, Kentucky and about 56 km (35 miles) northeast of Bowling Green, Kentucky. Most of the cave lies within Mammoth Cave National Park, a World Heritage Site and a part of the United Nations program of International Biosphere Reserves. It is the longest cave in the world by a factor of 3, with about 631 km (392 miles) of surveyed passage. Mammoth Cave consists of active and abandoned conduits carrying water from the recharge area to the south to discharge as springs along the deeply incised Green River. Development of the cave has spanned a time period from the Pliocene to the present. The exceptional length has been preserved by the protective sandstone caprock. Mammoth Cave contains a variety of carbonate and sulfate minerals, the latter preserved by the dry environment beneath the caprock. Mammoth Cave also supports an exceptional biological diversity.


Results 121 to 135 of 143
You probably didn't submit anything to search for