Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
Search in KarstBase
![]() |
![]() |
Caves in regions of moderate relief are widely regarded as the standard to which all others are compared. Tectonic stability is their most significant characteristic. The presence of moderate relief implies that uplift of the land is slow and erosional processes are able to keep pace. As a result, rivers easily erode to their local base levels, and base-level control is reflected in cave passages. The relation between caves and regional geomorphic history is stronger than in any other setting. Examples are given from the Illinois Basin (Kentucky and Indiana), the Ozark Plateau (Missouri), and the Appalachians.
Speleology and karst geomorphology are making important contributions to evolution of landscapes, thanks to more refined dating techniques, more specialized and advanced instruments, and intensive studies of caves and karst terrains. This chapter provides eight cases where cave and karst studies have made, or are making, new strides in the reconstruction of landscape evolution by dating cave deposits. Some of these study areas include world renowned caves such as Carlsbad Cavern and Lechuguilla Cave in the Guadalupe Mountains of New Mexico, Jewel and Wind caves in the Black Hills of South Dakota, and Mammoth Cave in Kentucky. The authors offer added detail on the caves of the Guadalupe Mountains and Grand Canyon
This manuscript offers preliminary geochemical evidence that investigates the potential for hypogene speleogenesis in the Cumberland Plateau of southeastern Kentucky, U.S.A. The region was traditionally considered a classic example of epigenic karst, but new insights have uncovered tantalizing observations that suggest alternatives to simple carbonic acid speleogenesis. Such first-order observations have included natural petroleum seeps at the surface and in caves, occasional cave morphologies consistent with action of hypogene fluids, and prolific gypsum within cave passages. To this point, geochemical data from caves and springs verify carbonic acid as the primary dissolutional agent; however, these same analyses cannot rule out sulfuric acid as a secondary source of dissolution. In this paper, Principal Component Analysis of ionic data reveals two components that coordinate with parameters associated with “karst water” and shallow brine. In contrast, molar ratios of Ca+ and Mg+ as compared to HCO3 - and SO4 2- closely follow the reaction pathway stipulated by the carbonate equilibria reactions. Despite these data, the role, if any, of hypogene speleogenesis in the karst of the Cumberland Plateau remains inconclusive. It is very likely that carbonic acid dominates speleogenesis; however, contributions from sulfuric acid may influence our understanding of “inception” and carbon flux within these aquifers.
The movement of autogenic recharge through the shallow epikarstic zone in soil-mantled karst aquifers is important in understanding recharge areas and rates, storage, and contaminant transport processes. The groundwater in agricultural karst areas, such as Kentucky’s Pennyroyal Plateau, which is characterized by shallow epikarst and deeper conduits flow, is susceptible to contamination from organic soil amendments and pesticides. To understand the storage and flow of autogenic recharge and its effects on contaminant transport on water flowing to a single epikarst drain in Crump’s Cave on Kentucky’s Mississippian Plateau, we employed several techniques to characterize the nature and hydrogeology of the system. During 2010–2012, water samples and geochemical data were collected every four hours before, during, and between storm events from a waterfall in Crumps Cave to track the transport and residence time of epikarst water and organic soil amendments during variable flow conditions. Geochemical data consisting of pH, specific conductivity, temperature, and discharge were collected continuously at 10-minute intervals, along with rainfall amounts. In addition, stable isotope data from rainfall, soil water, and epikarst water were collected weekly and during storm events to examine storage and recharge behavior of the system. The changes in geochemistry indicate simultaneous storage and transport of meteoric water through epikarst pathways into the cave, with rapid transport of bacteria occurring through the conduits that bypass storage. The isotopic data indicate that recharge is rapidly homogenized in the epikarst, with storage varying throughout the year based on meteorological conditions. Results indicate current best management practices in agricultural karst areas need to be revisited to incorporate areas that do not have surface runoff, but where contaminants are transported by seepage into local aquifers.
In this study, the concentration and isotopic composition of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) are measured in the karst groundwater of the Otter Creek watershed of the Cumberland Plateau of Kentucky, USA. Comparisons among these data and with the geochemistry of carbonate and gypsum equilibrium reactions reveal that DOC concentration is inversely related to discharge, multiple reaction pathways provide DIC with isotopic enrichment that may be directly related to mineral saturation, and oxidation of reduced sulfur is possible for dissolution. DOC is derived from C3 vegetation with an average δ13C DOC of ‒27‰. DIC in groundwater is derived from both pedogenic CO2 and HCO3 - from dissolved carbonate. At input sites to the karst aquifers DIC concentrations are expectedly low, less than 1 mmol/L, in waters that are undersaturated with respect to calcite. At the output of these karst aquifers DIC concentrations reach 3 mmol/L in waters that are at or above calcite saturation. Values of δ13C DIC range between ‒6.3 and ‒12.4‰ with CO2 degassing and calcite precipitation at some sites obfuscating a simple relationship between δ13C DIC, discharge, and mineral saturation. In addition, concentrations of DIC in sulfur seeps within the watershed range between 2–7 mmol/L with δ13C DIC values in some samples skewed more toward the anticipated value of carbonate bedrock than would be expected from reactions with carbonic acid alone. This suggests that the oxidation of reduced sulfur from shallow oilfield brines liberates bedrock DIC through reactions with sulfuric acid.
Subsidence from sinkhole collapse is a common occurrence in areas underlain by water-soluble rocks such as carbonate and evaporite rocks, typical of karst terrain. Almost all 50 States within the United States (excluding Delaware and Rhode Island) have karst areas, with sinkhole damage highest in Florida, Texas, Alabama, Missouri, Kentucky, Tennessee, and Pennsylvania. A conservative estimate of losses to all types of ground subsidence was $125 million per year in 1997. This estimate may now be low, as review of cost reports from the last 15 years indicates that the cost of karst collapses in the United States averages more than $300 million per year. Knowing when a catastrophic event will occur is not possible; however, understanding where such occurrences are likely is possible. The US Geological Survey has developed and main-tains national-scale maps of karst areas and areas prone to sinkhole formation. Several States provide additional resources for their citizens; Alabama, Colorado, Florida, Indiana, Iowa, Kentucky, Minnesota, Missouri, Ohio, and Pennsylvania maintain databases of sinkholes or karst features, with Florida, Kentucky, Missouri, and Ohio providing sinkhole reporting mechanisms for the public.
![]() |
![]() |