Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Speleogenesis issues:

Featured article from geoscience journal

Geomorphology, 2011, Vol 134, Issue 1, p. 144-156
Integrating geomorphological mapping, trenching, InSAR and GPR for the identification and characterization of sinkholes: A review and application in the mantled evaporite karst of the Ebro Valley (NE Spain)
Abstract:

This contribution illustrates the advantages of integrating conventional geomorphological methods with InSAR, ground penetrating radar and trenching for sinkhole mapping and characterization in a mantled evaporite karst area, where a significant proportion of the karstic depressions have been obliterated by artificial fills. The main practical aim of the investigation was to elucidate whether buried sinkholes overlap the areas planned for the construction of buildings and services, in order to apply a preventive planning strategy. Old aerial photographs and detailed topographic maps were the most useful sources of information for the identification of sinkholes and helped to obtain information on their chronology, either a minimum age or bracketing dates. The InSAR technique provided subsidence rate values ranging from 4.4 to 17.3 mm/yr consistent with the spatial distribution of the mapped sinkholes. This quantitative deformation data helped corroborating independently the existence of active buried sinkholes and improving the delineation of their limits. The GPR profiles contributed to the precise location of sinkhole edges, provided information on the geometry of buried sinkholes and deformation structures and helped to site trenches and to rule out the existence of sinkholes in particular areas. The main input derived from the trenches includes: (1) Confirming or ruling out anomalies of the GPR profiles attributable to subsidence. (2) Precise location of the edge of some filled sinkholes. (3) Information on subsidence mechanisms recorded by various deformation structures and cumulative subsidence magnitude. (4) Calculating minimum long-term subsidence rates using radiocarbon dates obtained from deformed sinkhole deposits. (5) Unequivocal evidence of active subsidence in areas assigned for the construction of buildings