Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Speleogenesis issues:

Republished from Gabrovšek, F. (Ed.). 2002. Evolution of karst: from prekarst to cessation. Postojna-Ljubljana, Zalozba ZRC, 97-115. Open link

UIS KHS Commission
Paleokarst: cessation and rebirth?
Abstract:

The transformation of active karst into paleokarst by burial, isolation or cessation of process is not necessarily permanent. Paleokarst structures and landforms can be and are exhumed or reactivated, sometimes on numerous occasions. There is not a great deal of similarity between the localities where exhumation and reactivation of paleokarst has been reported. Exhumation and reactivation however have not been reported in many karsts that are similar to those where they have been reported. Exhumation and reactivation appears to be favoured in four situations: - the margins of sedimentary basins overlying grand unconformities, the axes of anticlines, narrow steeply-dipping impounded karsts and where paleokarst fill contains unstable minerals. Six processes are principally responsible for exhumation and reactivation: - per-ascensum speleogenesis, eustatic sea level changes, paragenesis, high density speleogenesis, glaciation, and large-scale meteoric speleogenesis. On some occasions karst landforms, particularly caves or segments of caves, may survive intact and unfilled for geologically significant periods of time. These may be completely isolated from the surface environment, or become reactivated by entrance formation due to breakdown, surface lowering or headward erosion. The intersection and reactivation of ancient open cavities and of exhumed cavities by “modern” caves may be much more common than is currently recognised. If caves have histories as long and as complex as the karsts in which they are developed then many “modern” caves will be composite features composed of interconnected “modern”, relict and exhumed cavities excavated at different times by different processes. Unravelling these histories is the new challenge facing cave science. It will require caves to be studied in a much more detailed, thorough and systematic manner and will also require the application of new technologies in surveying, analysis and dating