Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Latest news:

The book "Hypogene Karst Regions and Caves of the World" is finished
The book “Hypogene Karst Regions and Caves of the World” is going to be published by Springer, in its series “Cave and Karst Systems of the World”.
Karst session at the AGU Fall 2016 Meeting in San Francisco
There will be a karst session at the AGU Fall 2016 Meeting in San Francisco, USA in December 12-16: Characterization, Modeling, and Remediation of Fissured, Carbonate, and Karst Groundwater Systems
A new book on caves and karst in Austria
A book "Höhlen und Karst in Österreich" (Caves and karst in Austria; Editors: Christoph Spötl, Lukas Plan & Ehrad Christian) will be printed until mid of July. Subscription is available.
Unusual perspective on caves
Many inspiring ideas on caves can be found in images created by children, generated by the International Contest of Kid’s Drawing "Caves in the Eyes of our Children".
Session on Karst Aquifers at the 43th IAH Congress, France
A call to submit an abstract to a session devoted to karst aquifers, which will be held in September in Montpellier during the 43rd IAH Congress

View all News

Did you know?

That homogeneity is a characteristic of a medium in which material properties are identical everywhere [22].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

Featured article from geoscience journal

Bulletin de La Societe Geologique de France/Bull. Soc. gol. Fr., 2010, Vol 181, Issue 4, p. 327-335
Hypogenic caves in France. Speleogenesis and morphology of the cave systems
Abstract:

Hypogenic caves develop by recharge from below, not directly influenced by seepage from the overlying land surface. Several processes of speleogenesis are combined, involving CO2 or H2S produced at depth. If the recharge from depth remains uniform, the growth of selected fissures is prevented, giving rise to maze cave systems with an upward development trend, which is defined as “transverse speleogenesis” [Klimchouk, 2003]. Hypogenic caves are much fewer than epigenic caves (i.e. developed downwards by meteoric water with aggressivity derived from soil). In France, as in the rest of the world, hypogenic caves were poorly recognized until recently because of their lower frequency, subsequent epigenic imprint often hiding the true origin, and the absence of a global conceptual model. However, about a hundred of hypogenic caves have been identified recently in France. The extreme diversity of hypogenic cave patterns and features is due to the variety of geological and topographic settings and types of flow. Thermal caves are a sub-set of hypogenic caves. Active thermal caves are few and small (Mas d’En Caraman, Vallon du Salut). Often, thermal in fluences only occur as point thermal in feeders into epigenic caves (Mescla, Estramar). In addition to the higher temperature, they may be characterized by CO2 (Madeleine) or H2S degassing, by warm water flowing in ceiling channels, or by manganese deposits. The Giant Phreatic Shafts locate along regional active fault lines. They combine all characteristics (thermal, CO2, H2S), due to the fast rising of deep water. The Salins Spring has been explored by scuba diving down to –70 m. Such a hyperkarstification is responsible for the development of the deepest phreatic shafts of the world: pozzo del Merro, Italy (-392 m). Inactive hypogenic caves may be recognized by their specific mineralization or by the presence of large calcite spar. Metallic deposits are due to the rising of deep waters that are warm, aggressive, and low in oxidation potential. Mixing with meteoric water generates Mississippi Valley Type (MVT) sulfidic ores. Iron deposits as massive bodies (Lagnes) or onto microbial media (Iboussires, Malacoste) making specific facies, such as “black tubes”, iron flakes, and iron pool fingers. Other frequent minerals are Mn oxides and Pb sulfur. In such low thermal conditions, calcite deposits occur as large spar in geodes or as passage linings. Other inactive hypogenic caves may also be recognized by characteristic patterns, such as mazes. The relatively constant recharge into confined karst aquifers suppresses fissure competition, so they enlarge at similar rates, producing a maze pattern. In horizontal beds, mazes extend centrifugally around the upwelling feeder. The juxtaposition of multiple discrete vertical feeders produces extended horizontal mazes. In gently tilted structures, 2D mazes extend below aquitards, or along bedding or more porous beds (Saint-Sbastien). In thick folded limestone the rising hypogenic flow alternatively follows joints and bedding planes, producing a 3D maze cave in a stair case pattern (Pigette). Isolated chambers are large cupola-like chambers fed by thermal slots. Thermal convection of air in a CO2-rich atmosphere causes condensation-corrosion that quickly produces voids above the water table (Champignons Cave). Sulfuric acid caves with replacement gypsum are produced by H2S degassing in the cave atmosphere. H2S oxidizes to H2SO4, which corrodes the carbonate rock and replaces it with gypsum. The strongest corrosion occurs above the water table, where sulfide degassing and thermal convection produce strong condensation-corrosion. Caves develop head ward from springs and from thermo-sulfuric slots upward (Chevalley-Serpents System). The low-gradient main drains record base level positions and even the slightest stages of water-table lowering (Chat Cave). Hypogenic speleogenesis provides better understanding of the distribution of karst voids responsible for subsidence hazards and the emplacement of minerals and hydrocarbons.