KarstBase a bibliography database in karst and cave science.
Featured articles from Cave & Karst Science Journals
Characterization of minothems at Libiola (NW Italy): morphological, mineralogical, and geochemical study, Carbone Cristina; Dinelli Enrico; De Waele Jo
Chemistry and Karst, White, William B.
The karst paradigm: changes, trends and perspectives, Klimchouk, Alexander
Long-term erosion rate measurements in gypsum caves of Sorbas (SE Spain) by the Micro-Erosion Meter method, Sanna, Laura; De Waele, Jo; Calaforra, José Maria; Forti, Paolo
The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , Briestensky, Milos; Stemberk, Josef; Rowberry, Matt D.;
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
Hydrogeology Journal/Journal of Hydrology, 2012, Issue 430, p. 13-24
Geochemical evolution of groundwater in the unsaturated zone of a karstic massif, using the PCO2–SIc relationship
Peyraube N. , Lastennet R. , Denis A.
Abstract:
In karstic environments, groundwater is strongly influenced by CO2 partial pressure variations of air present in the infiltration zone of these aquifers. In order to characterize the geochemical changes in groundwater as it moves through the infiltration zone, we monitored various rising springs in the perched karstic aquifer of Cussac (Dordogne, France), and measured the CO2 partial pressure in air of a nearby cavity (the Cussac Cave) for 24 months. Our method is based on the relationship between the saturation index with respect to calcite (SIc) and the CO2 partial pressure at atmospheric equilibrium with water. We distinguished a value for this last parameter when water is at equilibrium with respect to calcite (SIc = 0) called saturation CO2 partial pressure. The use of this parameter can provide information on flow conditions and relationships between water, air, and rock. Cussac aquifer is a suitable area to apply these methods because of its small size, numerous springs, and a cave that provides data for CO2 partial pressure condition inside the massif. Results show that most of the calcium-carbonate mineralization is acquired in the epikarst followed by a precipitation phase in the upper part of the infiltration zone. Groundwater reaches the saturated zone with some degree of saturation depending on CO2 partial pressure variations in air inside the massif.
In karstic environments, groundwater is strongly influenced by CO2 partial pressure variations of air present in the infiltration zone of these aquifers. In order to characterize the geochemical changes in groundwater as it moves through the infiltration zone, we monitored various rising springs in the perched karstic aquifer of Cussac (Dordogne, France), and measured the CO2 partial pressure in air of a nearby cavity (the Cussac Cave) for 24 months. Our method is based on the relationship between the saturation index with respect to calcite (SIc) and the CO2 partial pressure at atmospheric equilibrium with water. We distinguished a value for this last parameter when water is at equilibrium with respect to calcite (SIc = 0) called saturation CO2 partial pressure. The use of this parameter can provide information on flow conditions and relationships between water, air, and rock. Cussac aquifer is a suitable area to apply these methods because of its small size, numerous springs, and a cave that provides data for CO2 partial pressure condition inside the massif. Results show that most of the calcium-carbonate mineralization is acquired in the epikarst followed by a precipitation phase in the upper part of the infiltration zone. Groundwater reaches the saturated zone with some degree of saturation depending on CO2 partial pressure variations in air inside the massif.