KarstBase a bibliography database in karst and cave science.
Featured articles from Cave & Karst Science Journals
Characterization of minothems at Libiola (NW Italy): morphological, mineralogical, and geochemical study, Carbone Cristina; Dinelli Enrico; De Waele Jo
Chemistry and Karst, White, William B.
The karst paradigm: changes, trends and perspectives, Klimchouk, Alexander
Long-term erosion rate measurements in gypsum caves of Sorbas (SE Spain) by the Micro-Erosion Meter method, Sanna, Laura; De Waele, Jo; Calaforra, José Maria; Forti, Paolo
The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , Briestensky, Milos; Stemberk, Josef; Rowberry, Matt D.;
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
Aapg Bulletin/AAPG Bulletin, 2006, Vol 90, Issue 11, p. 1691-1718
Origin and reservoir characteristics of Upper Ordovician Trenton–Black River hydrothermal dolomite reservoirs in New York
Smith, Jr. , L. B.
Abstract:
In the past decade, more than 20 new natural gas fields have been discovered in laterally discontinuous dolomites of the Upper Ordovician Black River Group in south-central New York. The dolomites form around basement-rooted wrench faults that are detectable on seismic data. Most fields occur in and around elongate faultbounded structural lows interpreted to be negative flower structures. Away from these faults, the formation is composed of impermeable limestone and forms the lateral seal for the reservoirs. In most cases, the faults die out within the overlying Trenton Limestone and Utica Shale. Most porosity occurs in saddle dolomitecoated vugs, breccias, and fractured zones. Matrix porosity is uncommon in the Black River cores described for this study. The patchy distribution around basement-rooted faults and geochemical and fluid-inclusion analyses supports a fault-related hydrothermal origin for the saddle and matrix dolomites. This play went for many years without detection because of its unconventional structural setting (i.e., structural lows versus highs). Using the appropriate integrated structural-stratigraphic-diagenetic model, more hydrothermal dolomite natural gas reservoirs are likely to be discovered in the Black River of New York and in carbonates around the world.
In the past decade, more than 20 new natural gas fields have been discovered in laterally discontinuous dolomites of the Upper Ordovician Black River Group in south-central New York. The dolomites form around basement-rooted wrench faults that are detectable on seismic data. Most fields occur in and around elongate faultbounded structural lows interpreted to be negative flower structures. Away from these faults, the formation is composed of impermeable limestone and forms the lateral seal for the reservoirs. In most cases, the faults die out within the overlying Trenton Limestone and Utica Shale. Most porosity occurs in saddle dolomitecoated vugs, breccias, and fractured zones. Matrix porosity is uncommon in the Black River cores described for this study. The patchy distribution around basement-rooted faults and geochemical and fluid-inclusion analyses supports a fault-related hydrothermal origin for the saddle and matrix dolomites. This play went for many years without detection because of its unconventional structural setting (i.e., structural lows versus highs). Using the appropriate integrated structural-stratigraphic-diagenetic model, more hydrothermal dolomite natural gas reservoirs are likely to be discovered in the Black River of New York and in carbonates around the world.