KarstBase a bibliography database in karst and cave science.
Featured articles from Cave & Karst Science Journals
Characterization of minothems at Libiola (NW Italy): morphological, mineralogical, and geochemical study, Carbone Cristina; Dinelli Enrico; De Waele Jo
Chemistry and Karst, White, William B.
The karst paradigm: changes, trends and perspectives, Klimchouk, Alexander
Long-term erosion rate measurements in gypsum caves of Sorbas (SE Spain) by the Micro-Erosion Meter method, Sanna, Laura; De Waele, Jo; Calaforra, José Maria; Forti, Paolo
The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , Briestensky, Milos; Stemberk, Josef; Rowberry, Matt D.;
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
Aapg Bulletin/AAPG Bulletin, 2006, Vol 90, Issue 11, p. 1739-1761
Pervasive dolomitization with subsequent hydrothermal alteration in the Clarke Lake gas field, Middle Devonian Slave Point Formation, British Columbia, Canada
Lonnee J. , Machel H. G.
Abstract:
The Clarke Lake gas field in British Columbia, Canada, is hosted in pervasively dolomitized Middle Devonian carbonates of the Slave Point Formation. The Clarke Lake field consists mostly of pervasive matrix dolomite and some saddle dolomite, the latter varying in volume from about zero in limestones to normally 20–40% (locally up to 80%) in dolostones over any given 10-m (33-ft) core interval. Some of the saddle dolomite is replacive, some is cement, and both varieties are associated with dissolution porosity and recrystallized matrix dolomite. The major objective of this study is to identify the causes and timing of matrix and saddle dolomite formation, specifically, whether these dolomites are hydrothermal. A comprehensive petrographic and geochemical examination indicates that pervasive matrix dolomitization was accomplished by long-distance migration of halite-saturated brines during the Late Devonian toMississippian. Fluid-inclusion homogenization temperatures suggest about 150 (uncorrected) to 190jC (corrected) at the time of matrix dolomitization. These temperatures differ markedly from most published work on the dolomitized Devonian reefs in the Alberta Basin south of the Peace River arch, where pervasive matrix dolomitization was accomplished by advection of slightly modified seawater at temperatures of about 60–80jC, and where no hydrothermal influence was ever present. The saddle dolomites at Clarke Lake are not cogenetic with matrix dolomite and are not the product of hydrothermal dolomitization (sensu stricto). Instead, they formed through the hydrothermal alteration of matrix dolomite by way of invasion of a gypsum-saturated brine during periods of extremely high heat flow and regional plate-margin tectonics in the Late Devonian to Mississippian. Fluidinclusion homogenization temperatures suggest that hydrothermal alteration occurred between 230 (uncorrected) and 267jC (corrected), which is significantly higher than the maximumtemperature of about 190jC attained by the Slave Point Formation during burial. The sources of the halite- and gypsum-saturated brines are Middle Devonian evaporite depositional environments roughly 200 km (124 mi) south and/or east of Clarke Lake, near the Peace River arch
The Clarke Lake gas field in British Columbia, Canada, is hosted in pervasively dolomitized Middle Devonian carbonates of the Slave Point Formation. The Clarke Lake field consists mostly of pervasive matrix dolomite and some saddle dolomite, the latter varying in volume from about zero in limestones to normally 20–40% (locally up to 80%) in dolostones over any given 10-m (33-ft) core interval. Some of the saddle dolomite is replacive, some is cement, and both varieties are associated with dissolution porosity and recrystallized matrix dolomite. The major objective of this study is to identify the causes and timing of matrix and saddle dolomite formation, specifically, whether these dolomites are hydrothermal. A comprehensive petrographic and geochemical examination indicates that pervasive matrix dolomitization was accomplished by long-distance migration of halite-saturated brines during the Late Devonian toMississippian. Fluid-inclusion homogenization temperatures suggest about 150 (uncorrected) to 190jC (corrected) at the time of matrix dolomitization. These temperatures differ markedly from most published work on the dolomitized Devonian reefs in the Alberta Basin south of the Peace River arch, where pervasive matrix dolomitization was accomplished by advection of slightly modified seawater at temperatures of about 60–80jC, and where no hydrothermal influence was ever present. The saddle dolomites at Clarke Lake are not cogenetic with matrix dolomite and are not the product of hydrothermal dolomitization (sensu stricto). Instead, they formed through the hydrothermal alteration of matrix dolomite by way of invasion of a gypsum-saturated brine during periods of extremely high heat flow and regional plate-margin tectonics in the Late Devonian to Mississippian. Fluidinclusion homogenization temperatures suggest that hydrothermal alteration occurred between 230 (uncorrected) and 267jC (corrected), which is significantly higher than the maximumtemperature of about 190jC attained by the Slave Point Formation during burial. The sources of the halite- and gypsum-saturated brines are Middle Devonian evaporite depositional environments roughly 200 km (124 mi) south and/or east of Clarke Lake, near the Peace River arch
Keywords: hypogene karst