KarstBase a bibliography database in karst and cave science.
Featured articles from Cave & Karst Science Journals
Characterization of minothems at Libiola (NW Italy): morphological, mineralogical, and geochemical study, Carbone Cristina; Dinelli Enrico; De Waele Jo
Chemistry and Karst, White, William B.
The karst paradigm: changes, trends and perspectives, Klimchouk, Alexander
Long-term erosion rate measurements in gypsum caves of Sorbas (SE Spain) by the Micro-Erosion Meter method, Sanna, Laura; De Waele, Jo; Calaforra, José Maria; Forti, Paolo
The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , Briestensky, Milos; Stemberk, Josef; Rowberry, Matt D.;
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
Aapg Bulletin/AAPG Bulletin, 2006, Vol 90, Issue 11, p. 1787-1801
Fractured hydrothermal dolomite reservoirs in the Devonian Dundee Formation of the central Michigan Basin
Luczaj J. A. , Harrison Iii. W. B. , Williams N. S.
Abstract:
The Middle Devonian Dundee Formation is the most prolific oilproducing unit in the Michigan Basin, with more than 375 million bbl of oil produced to date. Reservoir types in the Dundee Formation can be fracture controlled or facies controlled, and each type may have been diagenetically modified. Although fracture-controlled reservoirs produce more oil than facies-controlled reservoirs, little is known about the process by which they were formed and diagenetically modified. In parts of the Dundee, preexisting sedimentary fabrics have been strongly overprinted by medium- to coarse-grained dolomite. Dolomitized intervals contain planar and saddle dolomite, with minor calcite, anhydrite, pyrite, and uncommon fluorite. Fluid inclusion analyses of two-phase aqueous inclusions in dolomite and calcite suggest that some water-rock interaction in these rocks occurred at temperatures as high as 120–150jC in the presence of dense Na-Ca-Mg-Cl brines. These data, in conjunction with published organic maturity data and burial reconstructions, are not easily explained by a long-term burial model and have important implications for the thermal history of the Michigan Basin. The data are best explained by a model involving short-duration transport of fluids and heat from deeper parts of the basin along major fault and fracture zones connected to structures in the Precambrian basement. These data give new insight into the hydrothermal processes responsible for the formation of these reservoirs.
The Middle Devonian Dundee Formation is the most prolific oilproducing unit in the Michigan Basin, with more than 375 million bbl of oil produced to date. Reservoir types in the Dundee Formation can be fracture controlled or facies controlled, and each type may have been diagenetically modified. Although fracture-controlled reservoirs produce more oil than facies-controlled reservoirs, little is known about the process by which they were formed and diagenetically modified. In parts of the Dundee, preexisting sedimentary fabrics have been strongly overprinted by medium- to coarse-grained dolomite. Dolomitized intervals contain planar and saddle dolomite, with minor calcite, anhydrite, pyrite, and uncommon fluorite. Fluid inclusion analyses of two-phase aqueous inclusions in dolomite and calcite suggest that some water-rock interaction in these rocks occurred at temperatures as high as 120–150jC in the presence of dense Na-Ca-Mg-Cl brines. These data, in conjunction with published organic maturity data and burial reconstructions, are not easily explained by a long-term burial model and have important implications for the thermal history of the Michigan Basin. The data are best explained by a model involving short-duration transport of fluids and heat from deeper parts of the basin along major fault and fracture zones connected to structures in the Precambrian basement. These data give new insight into the hydrothermal processes responsible for the formation of these reservoirs.