KarstBase a bibliography database in karst and cave science.
Featured articles from Cave & Karst Science Journals
Characterization of minothems at Libiola (NW Italy): morphological, mineralogical, and geochemical study, Carbone Cristina; Dinelli Enrico; De Waele Jo
Chemistry and Karst, White, William B.
The karst paradigm: changes, trends and perspectives, Klimchouk, Alexander
Long-term erosion rate measurements in gypsum caves of Sorbas (SE Spain) by the Micro-Erosion Meter method, Sanna, Laura; De Waele, Jo; Calaforra, José Maria; Forti, Paolo
The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , Briestensky, Milos; Stemberk, Josef; Rowberry, Matt D.;
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
Arctic and Alpine Research, 1997, Vol 29, Issue 2, p. 240-252
Aufeis of the Firth River basin, Northern Yukon Canada: Insights into permafrost hydrogeology and Karst
Clark Id, Lauriol B,
Abstract:
The 31-km(2) aufeis ice sheet of the upper Firth River holds a wealth of information on groundwater hydrology in periglacial environments. Baseflow recession calculations, corrected for aufeis storage (12% of basin discharge), indicate specific groundwater recharge rates of up to 100 mm yr(-1) (up to 50% of runoff), suggesting a significant proportion of drainage from karst. The upper Firth River aufeis is a composite aufeis, with discrete baseflow contributions from different watersheds. Since the late Pleistocene, annual growth of the aufeis has exerted a strong control on lateral erosion and the local river channel geomorphology. Two groundwater recharge processes are distinguished on the basis of carbonate geochemistry and 8(13)C: (1) Methanogenic groundwaters, with C-13(DIC) up to -3.3 parts per thousand, are recharged through saturated soils underlain by permafrost; conditions which support anaerobic consumption of dissolved organic carbon (DOC) and produce up to 700 mu g-CH4 L-1 (calculated), and (2) Karst groundwaters, with C-13-depleted DIC, recharged through unsaturated soils and circulate through fissured talik in the carbonate bedrock. Most drainage from the region shows varying contributions of these two groundwaters, although a greater contribution from the methanogenic groundwaters occurs in north-facing watersheds. The 8(13)C values far cryogenic calcite precipitates in the ice indicate that the karst groundwaters are the major contribution to aufeis growth. The combined use of 8(13)C(DIC) and geochemistry may be a useful tool to quantify methanogenesis in northern watersheds
The 31-km(2) aufeis ice sheet of the upper Firth River holds a wealth of information on groundwater hydrology in periglacial environments. Baseflow recession calculations, corrected for aufeis storage (12% of basin discharge), indicate specific groundwater recharge rates of up to 100 mm yr(-1) (up to 50% of runoff), suggesting a significant proportion of drainage from karst. The upper Firth River aufeis is a composite aufeis, with discrete baseflow contributions from different watersheds. Since the late Pleistocene, annual growth of the aufeis has exerted a strong control on lateral erosion and the local river channel geomorphology. Two groundwater recharge processes are distinguished on the basis of carbonate geochemistry and 8(13)C: (1) Methanogenic groundwaters, with C-13(DIC) up to -3.3 parts per thousand, are recharged through saturated soils underlain by permafrost; conditions which support anaerobic consumption of dissolved organic carbon (DOC) and produce up to 700 mu g-CH4 L-1 (calculated), and (2) Karst groundwaters, with C-13-depleted DIC, recharged through unsaturated soils and circulate through fissured talik in the carbonate bedrock. Most drainage from the region shows varying contributions of these two groundwaters, although a greater contribution from the methanogenic groundwaters occurs in north-facing watersheds. The 8(13)C values far cryogenic calcite precipitates in the ice indicate that the karst groundwaters are the major contribution to aufeis growth. The combined use of 8(13)C(DIC) and geochemistry may be a useful tool to quantify methanogenesis in northern watersheds
Keywords: baseflow, basin, bedrock, calcite, canada, carbon, carbonate, carbonate geochemistry, channel, cryogenic calcite, discharge, dissolved organic carbon, doc, drainage, environment, environments, erosion, geochemistry, geomorphology, groundwater, groundwater hydrology, groundwater recharge, groundwaters, growth, hydrogeology, hydrology, ice, information, karst, karst groundwater, late pleistocene, northern yukon, organic carbon, organic-carbon, part, permafrost, pleistocene, rates, recession, recharge, recharge processes, region, river, runoff, soil, soils, storage, support, time, times, values, watershed,