Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
KarstBase a bibliography database in karst and cave science.
Featured articles from Cave & Karst Science Journals
Characterization of minothems at Libiola (NW Italy): morphological, mineralogical, and geochemical study, Carbone Cristina; Dinelli Enrico; De Waele Jo
Chemistry and Karst, White, William B.
The karst paradigm: changes, trends and perspectives, Klimchouk, Alexander
Long-term erosion rate measurements in gypsum caves of Sorbas (SE Spain) by the Micro-Erosion Meter method, Sanna, Laura; De Waele, Jo; Calaforra, José Maria; Forti, Paolo
The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , Briestensky, Milos; Stemberk, Josef; Rowberry, Matt D.;
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Chemical Geology, 2005, Vol 215, Issue 0, p. 339-360
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
'Sour gas' hydrothermal jarosite: ancient to modem acid-sulfate mineralization in the southern Rio Grande Rift
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Lueth V. W. , Rye R. O. , Peters L. ,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Abstract:
As many as 29 mining districts along the Rio Grande Rift in southern New Mexico contain Rio Grande Rift-type (RGR) deposits consisting of fluorite-barite sulfide-jarosite, and additional RGR deposits occur to the south in the Basin and Range province near Chihuahua, Mexico. Jarosite occurs in many of these deposits as a late-stage hydrothermal mineral coprecipitated with fluorite, or in veinlets that crosscut barite. In these deposits, many of which are limestone-hosted, jarosite is followed by natrojarosite and is nested within silicified or argillized wallrock and a sequence of fluorite-barite sulfide and late hematite-gypsum. These deposits range in age from similar to 10 to 0.4 Ma on the basis of Ar-40/Ar-39 dating of jarosite. There is a crude north-south distribution of ages, with older deposits concentrated toward the south. Recent deposits also occur in the south, but are confined to the central axis of the rift and are associated with modem geothermal systems. The duration of hydrothermal jarosite mineralization in one of the deposits was approximately 1.0 my. Most Delta(18)O(SO4)-OH values indicate that jarosite precipitated between 80 and 240 degrees C, which is consistent with the range of filling temperatures of fluid inclusions in late fluorite throughout the rift, and in jarosite (180 degrees C) from Pena Blanca, Chihuahua, Mexico. These temperatures, along with mineral occurrence, require that the jarosite have had a hydrothermal origin in a shallow steam-heated environment wherein the low pH necessary for the precipitation of jarosite was achieved by the oxidation of H2S derived from deeper hydrothermal fluids. The jarosite also has high trace-element contents (notably As and F), and the jarosite parental fluids have calculated isotopic signatures similar to those of modem geothermal waters along the southern rift; isotopic values range from those typical of meteoric water to those of deep brine that has been shown to form from the dissolution of Permian evaporite by deeply circulating meteoric water. Jarosite delta(34)S values range from -24 parts per thousand to 5 parts per thousand, overlapping the values for barite and gypsum at the high end of the range and for sulfides at the low end. Most delta(34)S values for barite are 10.6 parts per thousand to 13.1 parts per thousand and many delta(34)S values for gypsum range from 13.1 parts per thousand to 13.9 parts per thousand indicating that a component of aqueous sulfate was derived from Permian evaporites (delta(34)S = 12 2 parts per thousand). The requisite H2SO4 for jarosite formation was derived from oxidation of H2S which was likely largely sour gas derived from the thermochemical reduction of Permian sulfate. The low delta(34)S values for the precursor H2S probably resulted from exchange deeper in the basin with the more abundant Permian SO42-- at similar to 150 to 200 degrees C. Jarosite formed at shallow levels after the PH buffering capacity of the host rock (typically limestone) was neutralized by precipitation of earlier minerals. Some limestone-hosted deposits contain caves that may have been caused by the low pH of the deep basin fluids due to the addition of deep-seated HF and other magmatic gases during periods of renewed rifting. Caves in other deposits may be due to sulfuric acid speleogenesis as a result of H2S incursion into oxygenated groundwaters. The isotopic data in these 'sour gas' jarosite occurrences encode a recod of episodic tectonic or hydrologic processes that have operated in the rift over the last 10 my. (c) 2004 Elsevier B.V. All rights reserved
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Keywords: acid, age, ages, alunite, ancient, ar-40/ar-39, barite, basin, brine, c, capacity, carlsbad cavern, caves, dating, deposit, deposits, dissolution, distribution, district, duration, end, environment, evaporite, evaporites, exchange, fluid, fluid inclusion, fluid inclusions, fluid-inclusion, form, formation waters, gas, gases, geochemistry, geothermal, geothermal systems, geothermal water, groundwater, groundwaters, gypsum, h2s, host, hydrothermal, hydrothermal fluids, illinois, isotopic composition, jarosite, level, limestone, ma, mexico, mineralization, minerals, mining, mining district, new-mexico, origin, oxidation, part, ph, precipitation, range, recent, reduction, rift, rio grande rift, rock, sequence, sour gas, south, southern, speleogenesis, stable isotopes, sulfate, sulfide, sulfides, sulfur, system, systems, temperature, temperatures, time, times, trace-element, usa, values, water, waters,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943