KarstBase a bibliography database in karst and cave science.
Featured articles from Cave & Karst Science Journals
Characterization of minothems at Libiola (NW Italy): morphological, mineralogical, and geochemical study, Carbone Cristina; Dinelli Enrico; De Waele Jo
Chemistry and Karst, White, William B.
The karst paradigm: changes, trends and perspectives, Klimchouk, Alexander
Long-term erosion rate measurements in gypsum caves of Sorbas (SE Spain) by the Micro-Erosion Meter method, Sanna, Laura; De Waele, Jo; Calaforra, José Maria; Forti, Paolo
The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , Briestensky, Milos; Stemberk, Josef; Rowberry, Matt D.;
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
Engineering Geology, 2002, Vol 65, Issue 0, p. 217-223
Road and bridge construction across gypsum karst in England
Cooper Ah, Saunders Jm,
Abstract:
Gypsum karst problems in the Permian and Triassic sequences of England have caused difficult conditions for bridge and road construction. In Northern England, the Ripon Bypass crosses Permian strata affected by active gypsum karst and severe subsidence problems. Here, the initial borehole site investigation for the road was supplemented by resistivity tomography studies. The roadway was reinforced with two layers of tensile membrane material within the earth embankment. This will prevent dangerous catastrophic collapse, but will allow sagging to show where problems exist. The River Ure Bridge was constructed across an area of subsidence pipes filled with alluvial deposits. It was built with extra strength, larger than normal foundations. If one pier fails, the bridge is designed for adjacent arches to span the gap without collapse. The bridge piers are also fitted with electronic load monitoring to warn of failure. In the Midlands area of England, road construction over Triassic gypsum has required a phase of ground improvement on the Derby Southern Bypass. Here, the gypsum caps a hill where it was formerly mined; it dips through a karstic dissolution zone into an area of complete dissolution and collapse. The road and an associated flyover were built across these ground conditions. A major grouting program before the earthworks began treated the cavities in the mine workings and the cavernous margin of the gypsum mass. Within the karstic dissolution zone, gypsum blocks and cavities along the route were identified by conductivity and resistivity geophysical surveys, excavated and backfilled. In the areas of complete dissolution and collapse, the road foundation was strengthened with vibrated stone columns and a reinforced concrete road deck was used. (C) 2002 S. Yamamoto. Published by Elsevier Science B.V on behalf of NERC. All rights reserved
Gypsum karst problems in the Permian and Triassic sequences of England have caused difficult conditions for bridge and road construction. In Northern England, the Ripon Bypass crosses Permian strata affected by active gypsum karst and severe subsidence problems. Here, the initial borehole site investigation for the road was supplemented by resistivity tomography studies. The roadway was reinforced with two layers of tensile membrane material within the earth embankment. This will prevent dangerous catastrophic collapse, but will allow sagging to show where problems exist. The River Ure Bridge was constructed across an area of subsidence pipes filled with alluvial deposits. It was built with extra strength, larger than normal foundations. If one pier fails, the bridge is designed for adjacent arches to span the gap without collapse. The bridge piers are also fitted with electronic load monitoring to warn of failure. In the Midlands area of England, road construction over Triassic gypsum has required a phase of ground improvement on the Derby Southern Bypass. Here, the gypsum caps a hill where it was formerly mined; it dips through a karstic dissolution zone into an area of complete dissolution and collapse. The road and an associated flyover were built across these ground conditions. A major grouting program before the earthworks began treated the cavities in the mine workings and the cavernous margin of the gypsum mass. Within the karstic dissolution zone, gypsum blocks and cavities along the route were identified by conductivity and resistivity geophysical surveys, excavated and backfilled. In the areas of complete dissolution and collapse, the road foundation was strengthened with vibrated stone columns and a reinforced concrete road deck was used. (C) 2002 S. Yamamoto. Published by Elsevier Science B.V on behalf of NERC. All rights reserved
Keywords: alluvial deposits, area, areas, block, bridge, c, cavities, cavity, collapse, conductivity, construction, deposit, deposits, dissolution, england, gypsum, gypsum karst, investigation, karst, karstic dissolution, layers, margin, mass, membrane, mine, monitoring, northern england, phase, resistivity, ripon, river, road construction, s, science, sequence, sequences, site, southern, stone, strata, strength, subsidence, time, times, tomography, triassic, zone,