MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_left.php on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That corrasion is mechanical erosion performed by such moving agents as water, ice, and wind, especially when armed with rock fragments [10]. see also corrosion.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for concrete (Keyword) returned 20 results for the whole karstbase:
Showing 1 to 15 of 20
Agressive action of water on carbonate rocks, gypsum and concrete, 1939,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Laptev F. F.

Pile foundation problems in Kuala Lumpur Limestone, Malaysia, 1987,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Bergado Dt, Selvanayagam An,
The geology and karstic nature of the Kuala Lumpur (Malaysia) limestone are described in relation to pile foundation problems of heavily loaded structures. The presence of cavities, pinnacles, cantilever slabs, floating slabs and pockets of soft silty clay and loose sand in the underlying limestone bedrock presents formidable challenges to foundation engineers. Other problems include insufficient seating and damage to pile tips due to irregular and sloping bedrock surfaces. There is also the added difficulty of detecting the location and extent of cavities. Empirical design methods and local construction techniques have been successfully used such as: (i) bridging limestone cavities and slabs by filling with concrete, (ii) utilizing numerous small diameter high yield stress piles to distribute the loads and to withstand high driving stresses, (iii) filling cavities with concrete, and (iv) using micropiles to redistribute the loads. Two case histories are presented, consisting of an access ramp and a tall building. In each of these case histories, the soil investigation methods, the pile bearing capacity calculations, the selection of pile types, the pile load tests, the pile driving criteria, and construction problems are outlined and discussed. The pile foundation used consisted of H-section, high yield stress, 355 x 368 mm, driven steel piles with capacities of 750 kN to 1280 kN for the access ramp structures and the same H-section steel piles with pile capacities of 965 kN to 1070 kN for the tall building

The influence of bedding planes on the development of karst caves (in Slovenian and with an English summary and abstract), PhD thesis, 1996,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Knez, M.

There have been much less researchers looking for the initial water ways in karst along the bedding-planes than those who deduced the origin of cave channels from tectonic structures. The aim of my research was to focus scientific attention on the sphere where the answers within the sedimentology might be expected. The study identified that the basic idea of bedding-plane importance at the initiation of cave channels was correct but also, that the interrelation is different from how it had been supposed. Single lithological, petrological or stratigraphical parameters of the inception are only partly known, or merely guessed. My research threw light on the problem of initial channels met in Velika dolina in Skocjanske jame. Cave passages, or their fragments and other traces of the underground karstification do not appear scattered at random on the walls but they are obviously gathered along a small number of so-called bedding-planes.
The basic working method was to locate the phreatic channels or their fragments, to sample and microscope those parts of the layers adjacent to a bedding-plane. Somewhere a whole layer was considered. Other methods were: regional distribution of caves, photographing, inventarisation and classification of speleogens and complexometry, the latter providing the purity of limestones.
The original channels are practically gathered along only three formative bedding-planes (out of 62 measured); their close vicinity differs from the others in several important properties: typically damaged rock, higher level of calcium carbonate, smaller porosity and others. Consequently the mentioned concordance cannot possibly be only apparent.
From the lithological point of view, I got neither substantial argument nor explanation for selective karstification. However, it was identified that at least in respect of a concrete example from Velika dolina, the inception started along interbedded slides that without doubt pushed the beds aside leaving an interval.


An Electromagnetic Geophysical Survey of the Freshwater Lens of Isla de Mona, Puerto Rico, 1998,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Richards, R. T. , Troester, Jo. W. , Mart?nez, M. I.
An electromagnetic reconnaissance of the freshwater lens of Isla de Mona, Puerto Rico was conducted with both terrain conductivity (TC) and transient electromagnetic (TEM) surface geophysical techniques. These geophysical surveys were limited to the southern and western parts of the island because of problems with access and cultural metallic objects such as reinforced concrete roadways on the eastern part of the island. The geophysical data were supplemented with the location of a freshwater spring found by scuba divers at a depth of about 20 m below sea level along the northern coast of the island. The geophysical data suggest that the freshwater lens has a maximum thickness of 20 m in the southern half of the island. The freshwater lens is not thickest at the center of the island but nearer the southwestern edge in Quaternary deposits and the eastern edge of the island in the Tertiary carbonates. This finding indicates that the ground-water flow paths on Isla de Mona are not radially symmetrical from the center of the island to the ocean. The asymmetry of the freshwater lens indicates that the differences in hydraulic conductivity are a major factor in determining the shape of the freshwater lens. The porosity of the aquifer, as determined by the geophysical data is about 33%

Special speleothems in cement-grouting tunnels and their implications of the atmospheric CO2 sink, 1998,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Liu Z. H. , He D. B. ,
Based on the analyses and comparisons of water chemistry, stable carbon isotopes and deposition rates of speleothems, the authors found that there are two kinds of speleothems in the tunnels at the Wujiangdu Dam site, Guizhou, China, namely the CO2-outgassing type and the CO2-absorbing type. The former is natural, as observed in general karst caves, and the product of karst processes under natural conditions. The latter, however, is special, resulting from the carbonation of a cement-grouting curtain and concrete. Due to the quick absorption of CO2 from the surrounding atmosphere, evidenced by the low CO2 content in the air and the high deposition rate of speleothems (as high as 10 cm/a) in the tunnels, the contribution of the carbonation process to the sink of CO2 in the atmosphere is important tin the order of magnitude of 10(8) tons c/a) and should be taken into consideration in the study of the global carbon cycle because of the use of cement on a worldwide scale

Comparison of stormwater management in a karst terrane in Springfield, Missouri - case histories, 1999,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Barner Wl,
Control of stormwater in sinkhole areas of Springfield, MO has involved the utilization of several standard approaches: concrete-lined channels draining into sinkholes; installation of drainage pipes into the sinkhole 'eyes' (swallow holes); filling of sinkholes; elaborate drains or pumps to remove stormwater from one sinkhole and discharging into another drainage basin or sinkhole; and enlargement of swallow holes by excavation to increase drainage capacity. Past planning considerations and standard engineering approaches have resulted in flooding of sinkholes and drainage areas, including residential, industrial and commercial developments. Having recognized the inadequacy of existing designs to control flooding and the need to accommodate increased runoff from future development, the City of Springfield adopted an ordinance (effective 19 June 1989 and modified in 1990 and 1993) in response to public pressure and concerns over flooding in sinkholes and sinkhole drainage areas. Three sites were analyzed to examine the effectiveness of contrasting design approaches to stormwater management. These sites differ in vegetation, on-site/off-site considerations, and types of development proposed. All three sites are located within the East Cherry Street Sinkhole Area. The first site, a wooded tract with unmodified sinkholes was cleared and developed for residential use. Discharge of stormwater was directed into sinkholes, and erosion control consisted of hydro-mulching and sedimentation fences in sinkhole areas. East of this location are two parcels which differ in removal of vegetation and off-site drainage relationships. Stormwater design in these sites was adapted for modifications made to sinkholes during railroad and highway construction several decades earlier. Sediment fencing, hydro-mulching and detention berms augment infiltration, restrict erosion, retard discharge to sinkholes, and incorporate off-site considerations. Ongoing observations of stormwater behavior indicate problems of flooding and sediment control at the western site but minimal disruptions of existing drainage patterns at the eastern sites. Design calculation for the western site show adequate volume retention in sinkholes, but different design approaches were implemented to 'soften' the impact of stormwater discharging into these sinkholes, allowing for minimal disruptions in the natural drainage network. The lack of recognition of sinkholes as integral parts of dynamic hydrologic systems may result in problems with on-site/off-site drainage. Standard engineering designs for stormwater detention are not appropriate for the hydraulic characteristics of the shallow karst drainage network. While runoff estimations are conservative, the design calculations fall short of adequately addressing actual stormwater runoff characteristics. (C) 1999 Elsevier Science B.V. All rights reserved

Exploitation of massif fracturation by karstification: example of the Causse de I'Hortus (Herault, France), 1999,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Boinet N,
The Causse de l'Hortus is a particularly well adapted massif to the survey of the fracturation and to its interdependences with karstification. The on-going realisation of a hydrogeological and speleological monograph of the massif, as well as the existence of more than twenty kilometers of prospected channels belonging to the active networks, provide new data which can be compared with previous surveys carried out in this field. The comparison of the directions of fracturation, visible on aerial photographs with directions currently exploited by the karstic channels on the whole Causse, show the effect of the greater fractures and the influence of the hydraulic gradient on the exploitation of the fracture spectrum. To sum up, the display of the relationships between the dextral disconnecting faults and the temporary emergences of the 'boulidou' type, results in concrete applications for speleological and hydrogeological aspects. The survey of these 'boulidous' provides new information about the vertical structuration of the karst. (C) Elsevier, Paris

Engineering impacts of karst: A review of some engineering aspects of limestone weathering with case studies from Devon and Ireland, MSc Thesis, 2001,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Pressdee, C.

The thesis aims to review the nature of karstic limestone terrains and the implications for engineering practices as a result of the uniquely difficult ground conditions they present. Case studies are included to highlight two very different, yet apparently common, engineering problems on karst. This abstract deals only with Linhay Hill Quarry in Ashburton, Devon where pinnacled rockhead and clay infilled dissolution pipes present problems in the extraction and processing of the limestone for use as aggregate.
The quarry has been in existence for over a hundred years and the current owners are drilling and blasting the Devonian limestone and processing it for a variety of purposes; namely aggregates for concrete, macadam and unbound applications. In the quarry, the rock is fairly evenly bedded and dipping towards the east. Near the ground surface it is extensively solution weathered to form a karst surface, which is now buried by more recent deposits. The extensive karst topography gives considerable problems, currently on the north side, where the intimate mixture of solution weathered limestone and later infilling clays and sandy sediments makes drilling and blasting difficult and contaminates the limestone material.
On the basis of the work carried out, the following summary of findings is presented:
Using published engineering classification schemes; the Chercombe Bridge Limestone in and around Linhay Hill Quarry has been classified as Class III to IV Karst ('Mature' to 'Complex' Karst, Waltham, 1999).
• The origin of the karst is proposed to be the result of a combination of subtropical climate and localised valley conditions in the early Tertiary. Weathering and erosion of the Dartmoor granite and adjacent Cretaceous rocks provided fluvial sediment to subsequently infill the solution channels and cavities in the limestone.
• The physical effects of weathering have been shown to reduce the strength and density of the limestone whilst increasing the water absorption. This has implications for the quality of aggregate produced in the quarry.
• The chemical effects of dolomitisation and solutional weathering have been shown to produce a highly variable material in the quarry.
• Residual insoluble minerals were found to be randomly distributed and exhibited typically high densities, high absorptions and high clay and iron oxide/hydroxide contents.
• The nature of the infilled karst together with the effects of weathering mentioned above has significantly affected the workings of the quarry with considerable cost implications. They are listed (in no particular order) as follows:
Overburden stripping extremely time consuming and costly.
Increased drilling times through clay infilled fissures/cavities.
Enforced blast hole surveying techniques due to variable ground.
Enforced blast charge restriction resulting in reduced primary fragmentation.
Induced dolines in the surrounding farmland.
Costs of washing/scrubbing of clay coated 'contaminated' rock.
Clay materials not always removed resulting in reduced efficiency of processing plant.
Quality of aggregates impaired by variable rock properties and presence of clay.
Implications for concrete and mortar include potentially reduced workability strength and durability


Coastal karst springs in the Mediterranean basin : study of the mechanisms of saline pollution at the Almyros spring (Crete), observations and modelling, 2002,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Arfib B, De Marsily G, Ganoulis J,
Variations in salinity and flow rate in the aerial, naturally salty spring of Almyros of Heraklion on Crete were monitored during two hydrological cycles. We describe the functioning of the coastal karstic system of the Almyros and show the influence of the duality of the flow in the karst (conduits and fractured matrix) on the quality of the water resource in the coastal area. A mechanism of saltwater intrusion into this highly heterogeneous system is proposed and validated with a hydraulic mathematical model, which describes the observations remarkably well. Introduction. - Fresh groundwater is a precious resource in many coastal regions, for drinking water supply, either to complement surface water resources, or when such resources are polluted or unavailable in the dry season. But coastal groundwater is fragile, and its exploitation must be made with care to prevent saltwater intrusion as a result of withdrawal, for any aquifer type, porous, fractured or karstic. In karstic zones, the problem is very complex because of the heterogeneous nature of the karst, which makes it difficult to use the concept of representative elementary volume developed for porous or densely fractured systems. The karstic conduits focus the major part of the flow in preferential paths, where the water velocity is high. In coastal systems, these conduits have also an effect on the distribution of the saline intrusion. As was shown e.g. by Moore et al. [1992] and Howard and Mullings [1996], both freshwater and salt-water flow along the fractures and conduits to reach the mixing zone, or the zone where these fluids are superposed in a dynamic equilibrium because of their differences in density ; but the dynamics of such a saltwater intrusion are generally unknown and not represented in models. Such coastal karstic systems are intensely studied at this moment in the Mediterranean region [Gilli, 1999], both as above sea-level or underwater springs, for potential use in areas where this resource would be of great value for economic development. This article discusses the freshwater-saltwater exchange mechanisms in the karstic aquifer of the Almyros of Heraklion aquifer (Crete) and explains the salinity variations observed in the spring. First, the general hydrogeology of the study site is described, then the functioning of the spring : a main conduit drains the freshwater over several kilometres and passes at depth through a zone where seawater is naturally present. The matrix-conduit exchanges are the result of pressure differences between the two media. These processes are represented in a mathematical model that confirms their relevance. General hydrogeology of the studied site. - The karstic coastal system of the Almyros of Heraklion (Crete) covers 300 km2 in the Ida massif whose borders are a main detachment fault, and the Sea of Crete in the north, the Psiloritis massif (highest summit at 2,456 m) in the south and west, and the collapsed basin of Heraklion filled in by mainly neo-geneous marl sediments in the east. The watershed basin consists of the two lower units of characteristic overthrust formations of Crete (fig. 1) : the Cretaceous Plattenkalk and the Cretaceous Tripolitza limestones. The two limestone formations are locally separated by interbedded flysch or phyllade units that form an impervious layer [Bonneau et al., 1977 ; Fassoulas, 1999] and may lead to different flow behaviour within the two karstic formations. Neo-tectonic activity has dissected these formations with large faults and fractures. The present-day climate in Crete is of Mediterranean mountain type, with heavy rain storms and snow on the summits in winter. Rainfall is unevenly distributed over the year, with 80 % of the annual total between October and March and a year-to-year average of 1,370 mm. The flow rate of the spring is high during the whole hydrologic cycle, with a minimum in summer on the order of 3 m3.s-1 and peak flow in winter reaching up to 40 m3.s -1. The water is brackish during low flow, up to a chloride content of 6 g.l-1, i.e. 23 % of seawater, but it is fresh during floods, when the flow rate exceeds 15 m3.s-1. During the 1999-2000 and 2000-2001 hydrologic cycles, the water was fresh during 14 and 31 days, respectively. The water temperature is high and varies very little during the year (see table I). In the areas of Keri and Tilissos (fig. 1), immediately south of the spring, the city of Heraklion extracts water from the karstic system through a series of 15 wells with depth reaching 50 to 100 m below sea level. Initially, when the wells were drilled, the water was fresh, but nowadays the salinity rises progressively, but unequally from well to well (fig. 2). The relatively constant temperatures and salinities of the wells, during the hydrological cycle, contrast with the large salinity variations at the spring (fig. 2 and table I). They show that the karstic system is complex and comprises different compartments, where each aquifer unit reacts to its individual pressures (pumping, rainfall) according to its own hydrodynamic characteristics [Arfib et al., 2000]. The Almyros spring seems disconnected from the surrounding aquifer and behaves differently from that which feeds the wells (upper Tripolitza limestone). It is recharged by fresh water from the mountains, which descends to depths where it probably acquires its salinity. The spring would thus be the largest resource of the area, if it was possible to prevent its pollution by seawater. A general functioning sketch is proposed (fig. 3), which includes the different geological units of interest. Identification of the functioning of the Almyros spring through monitoring of physical and chemical parameters. - The functioning of the aquifer system of the Almyros spring was analysed by monitoring, over two hydrological cycles, the level of the spring, the discharge, the electric conductivity and the temperature recorded at a 30 min time interval. In the centre of the watershed basin, a meteorological station at an altitude of 800 m measures and records at a 30 min time interval the air temperature, rainfall, relative humidity, wind velocity and direction ; moreover, an automatic rain gauge is installed in the northern part of the basin at an altitude of 500 m. The winter floods follow the rhythm of the rainfall with strong flow-rate variations. In contrast, the summer and autumn are long periods of drought (fig. 7). The flow rate increases a few hours after each rainfall event ; the water salinity decreases in inverse proportion to the flow rate a few hours to a few days later. Observations showed that the water volume discharged at the Almyros spring between the beginning of the flow rate increase and the beginning of the salinity decrease is quite constant, around 770,000 m3 (fig. 4) for any value of the flow rate, of the salinity and also of the initial or final rainfall rates. To determine this constant volume was of the upmost importance when analyzing the functioning of the Almyros spring. The lag illustrates the differences between the pressure wave that moves almost instantaneously through the karst conduit and causes an immediate flow rate increase after rainfall and the movement of the water molecules (transfer of matter) that arrives with a time lag proportionate to the length of the travel distance. The variation of the salinity with the flow rate acts as a tracer and gives a direct indication of the distance between the outlet and the seawater entrance point into the conduit. In the case of the Almyros, the constant volume of expelled water indicates that sea-water intrusion occurs in a portion of the conduit situated several kilometres away from the spring (table II), probably inland, with no subsequent sideways exchange in the part of the gallery leading up to the spring. As the lag between the flow rate and the salinity recorded at the spring is constant, one can correct the salinity value by taking, at each time step, with a given flow rate, the salinity value measured after the expulsion of 770,000 m3 at the spring, which transforms the output of the system so as to put the pressure waves and the matter transfer in phase [Arfib, 2001]. After this correction, the saline flux at the spring, equal to the flow rate multiplied by the corrected salinity, indicates the amount of sea-water in the total flow. This flux varies in inverse proportion to the total flow rate in the high-flow period and the beginning of the low-flow period, thereby demonstrating that the salinity decrease in the spring is not simply a dilution effect (fig. 5). The relationship that exists between flow rate and corrected salinity provides the additional information needed to build the conceptual model of the functioning of the part of the Almyros of Heraklion aquifer that communicates with the spring. Freshwater from the Psiloritis mountains feeds the Almyros spring. It circulates through a main karst conduit that descends deep into the aquifer and crosses a zone naturally invaded by seawater several kilometers from the spring. The seawater enters the conduit and the resulting brackish water is then transported to the spring without any further change in salinity. The conduit-matrix and matrix-conduit exchanges are governed by the head differences in the two media. Mathematical modelling of seawater intrusion into a karst conduit Method. - The functioning pattern exposed above shows that such a system cannot be treated as an equivalent porous medium and highlights the influence of heterogeneous structures such as karst conduits on the quantity and quality of water resources. Our model is called SWIKAC (Salt Water Intrusion in Karst Conduits), written in Matlab(R). It is a 1 D mixing-cell type model with an explicit finite-difference calculation. This numerical method has already been used to simulate flow and transport in porous [e.g. Bajracharya and Barry, 1994 ; Van Ommen, 1985] and karst media [e.g. Bauer et al., 1999 ; Liedl and Sauter, 1998 ; Tezcan, 1998]. It reduces the aquifer to a single circular conduit surrounded by a matrix equivalent to a homogeneous porous medium where pressure and salinity conditions are in relation with sea-water. The conduit is fed by freshwater at its upstream end and seawater penetrates through its walls over the length L (fig. 6) at a rate given by an equation based on the Dupuit-Forchheimer solution and the method of images. The model calculates, in each mesh of the conduit and at each time step, the head in conditions of turbulent flow with the Darcy-Weisbach equation. The head loss coefficient {lambda} is calculated by Louis' formula for turbulent flow of non-parallel liquid streams [Jeannin, 2001 ; Jeannin and Marechal, 1995]. The fitting of the model is intended to simulate the chloride concentration at the spring for a given matrix permeability (K), depth (P) and conduit diameter (D) while varying its length (L) and its relative roughness (kr). The spring flow rates are the measured ones ; at present, the model is not meant to predict the flow rate of the spring but only to explain its salinity variations. Results and discussion. - The simulations of chloride concentrations were made in the period from September 1999 to May 2001. The depth of the horizontal conduit where matrix-conduit exchanges occur was tested down to 800 m below sea level. The diameter of the conduit varied between 10 and 20 m, which is larger than that observed by divers close to the spring but plausible for the seawater intrusion zone. The average hydraulic conductivity of the equivalent continuous matrix was estimated at 10-4 m/s. A higher value (10-3 m/s) was tested and found to be possible since the fractured limestone in the intrusion zone may locally be more permeable but a smaller value (10-5 m/s) produces an unrealistic length (L) of the saline intrusion zone (over 15 km). For each combination of hydraulic conductivity, diameter and depth there is one set of L (length) and kr (relative roughness) calibration parameters. All combinations for a depth of 400 m or more produce practically equivalent results, close to the measured values. When the depth of the conduit is less than 400 m, the simulated salinity is always too high. Figure 7 shows results for a depth of 500 m, a diameter of 15 m and a hydraulic conductivity of 10-4 m/s. The length of the saltwater intrusion zone is then 1,320 m, 4,350 m away from the spring and the relative roughness coefficient is 1.1. All the simulations (table II) need a very high relative roughness coefficient which may be interpreted as an equivalent coefficient that takes into account the heavy head losses by friction and the variations of the conduit dimensions which, locally, cause great head losses. The model simulates very well the general shape of the salinity curve and the succession of high water levels in the Almyros spring but two periods are poorly described due to the simplicity of the model. They are (1) the period following strong freshwater floods, where the model does not account for the expulsion of freshwater outside the conduit and the return of this freshwater which dilutes the tail of the flood and (2) the end of the low-water period when the measured flux of chlorides falls unexpectedly (fig. 5), which might be explained by density stratification phenomena of freshwater-saltwater in the conduit (as observed in the karst gallery of Port-Miou near Cassis, France [Potie and Ricour, 1974]), an aspect that the model does not take into account. Conclusions. - The good results produced by the model confirm the proposed functioning pattern of the spring. The regulation of the saline intrusion occurs over a limited area at depth, through the action of the pressure differences between the fractured limestone continuous matrix with its natural saline intrusion and a karst conduit carrying water that is first fresh then brackish up to the Almyros spring. The depth of the horizontal conduit is more than 400 m. An attempt at raising the water level at the spring, with a concrete dam, made in 1987, which was also modelled, indicates that the real depth is around 500 m but the poor quality of these data requires new tests to be made before any firm conclusions on the exact depth of the conduit can be drawn. The Almyros spring is a particularly favorable for observing the exchanges in the conduit network for which it is the direct outlet but it is not representative of the surrounding area. To sustainably manage the water in this region, it is essential to change the present working of the wells in order to limit the irreversible saline intrusion into the terrain of the upper aquifers. It seems possible to exploit the spring directly if the level of its outlet is raised. This would reduce the salinity in the spring to almost zero in all seasons by increasing the head in the conduit. In its present state of calibration, the model calculates a height on the order of 15 m for obtaining freshwater at the spring throughout the year, but real tests with the existing dam are needed to quantify any flow-rate losses or functional changes when there is continual overpressure in the system. The cause of the development of this karstic conduit at such a great depth could be the lowering of the sea level during the Messinian [Clauzon et al., 1996], or recent tectonic movements

Road and bridge construction across gypsum karst in England, 2002,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Cooper Ah, Saunders Jm,
Gypsum karst problems in the Permian and Triassic sequences of England have caused difficult conditions for bridge and road construction. In Northern England, the Ripon Bypass crosses Permian strata affected by active gypsum karst and severe subsidence problems. Here, the initial borehole site investigation for the road was supplemented by resistivity tomography studies. The roadway was reinforced with two layers of tensile membrane material within the earth embankment. This will prevent dangerous catastrophic collapse, but will allow sagging to show where problems exist. The River Ure Bridge was constructed across an area of subsidence pipes filled with alluvial deposits. It was built with extra strength, larger than normal foundations. If one pier fails, the bridge is designed for adjacent arches to span the gap without collapse. The bridge piers are also fitted with electronic load monitoring to warn of failure. In the Midlands area of England, road construction over Triassic gypsum has required a phase of ground improvement on the Derby Southern Bypass. Here, the gypsum caps a hill where it was formerly mined; it dips through a karstic dissolution zone into an area of complete dissolution and collapse. The road and an associated flyover were built across these ground conditions. A major grouting program before the earthworks began treated the cavities in the mine workings and the cavernous margin of the gypsum mass. Within the karstic dissolution zone, gypsum blocks and cavities along the route were identified by conductivity and resistivity geophysical surveys, excavated and backfilled. In the areas of complete dissolution and collapse, the road foundation was strengthened with vibrated stone columns and a reinforced concrete road deck was used. (C) 2002 S. Yamamoto. Published by Elsevier Science B.V on behalf of NERC. All rights reserved

Karstification of the aquifer discovered during the construction of the expressway between Klanec and Črni Kal, Classical Karst, 2004,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Knez Martin, Slabe Tadej, Š, Ebela Stanka

Sixty-seven caves were opened during the earth removal and the excavation of the tunnel on the 6.5 km route section of the expressway between Klanec and Črni Kal. By their number, old caves predominated. Two - thirds of these caves were filled with deposits. The caves investigated contributed to our knowledge of the development of this part of the karst. The more than 450 m - long cave system of caves which we are trying to preserve was opened in the tunnel at Kastelec near the Škrklovica cave. Below the road, the passages of this system are connected with concrete pipes, leading from the roadside.


Don Quichotte, splologue avant la lettre, et Sancho Panza par accident, 2005,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Salomon Jeannol, Diaz_del_olmo Fernando
Don Quichotte, a precursor caver, and Sancho Panza by adventure - In the novel "Don Quichotte" from Cervants, of which 2005 is his 400th birthday, the exploration of the underground world is mentioned several times. It is not a total make up of the famous spanish author, because he based his ideas on concrete reality. The cave of Montesinos as well as the karst lagoons of Ruidera exist: we visited them in 1961, out of curiosity, after having read the novel. As a matter of fact, these famous localities of the Mancha are karstic areas with notable characteristics, foremost the lagoons of Ruidera, that have been made accessible for tourists. The 400th birthday is opportunity for the authors of this article to compare fiction (the "exploration" of Don Quichotte) and the real karst morphologies, and to draw some general conclusions.

Sinkhole Stabilization Design by Engineered Graded Filters, 2006,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Prochaska Adam B. ,
With increasing urban sprawl, developments are often forced to be located in areas that are geologically unfavorable. In karstic regions, these unfavorable areas would include locations that are susceptible to sinkholes. This paper provides a simple design procedure for one of the available sinkhole stabilization methods: a granular filter, a concrete slab with a filtered drain, and a rock drain to bridge across bedrock fissures. A hypothetical yet realistic example problem is worked through to illustrate the design process. Although a general sinkhole stabilization process has been outlined in this paper, each sinkhole is geologically unique and must be analyzed on an individual basis

The Schmidt Hammer in geomorphological research, 2006,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Goudie Andrew S. ,
The Schmidt Hammer, originally designed for testing the hardness of concrete in 1948, was first used in a geomorphological context in the 1960s. Since then the advantages and disadvantages of the device for measuring rock characteristics have become apparent, and the Schmidt Hammer has been used for an increasing range of purposes, including the study of various weathering phenomena, the relationships between rock strength and landform, and for relative dating of a range of Holocene features. Readings of rock hardness have often been found to correlate well with other measures of rock character, such as uniaxial compressive strength and Young's Modulus of Elasticity

On denudation rates in Karst , 2007,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Gabrovsek, F.

Paper presents a simple mathematical model, which enables study of denudation rates in karst. A vertical flow of water which is uniformly infiltrated at the surface is assumed. Denudation rate is calculated from the time needed to remove certain thickness of rock. This is done concretely on a limestone block dissected by a vertical array of fractures. It is shown that denudation rate increases with the thickness of removed layer and approaches an upper limit which is defined by the maximum denudation equations, which are based on assumption that all dissolution potential is projected into a surface lowering.


Results 1 to 15 of 20
You probably didn't submit anything to search for