MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That conglomerate is rock consisting of large well rounded waterworn particles [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 7
What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for fossil (Keyword) returned 243 results for the whole karstbase:
Showing 1 to 15 of 243
Origin of the sedimentary deposits of the Naracoorte Caves, South Australia, ,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Forbes Ms, Bestland Ea,
The origin of the sediments located in the Naracoorte Caves (South Australia) was investigated via the analysis of strontium isotope ratios (87Sr/86Sr), elemental geochemistry, and mineralogy. Sedimentary deposits located in Robertson, Wet, Blanche and several other chambers in Victoria Cave are all variable mixes of fine sand and coarse silts, which display similar and consistent strontium isotope ratios (0.717-0.725). This suggests that over the 400[no-break space]ka time frame that these deposits span there has been minimal variation in the source of the clastic sediments. Increased strontium concentrations for these cave sediments correspond with increasing silt content, yet there is no correlation between 87Sr/86Sr ratios and silt content. This implies that the silt-sized component of the sediments is the main contributor of strontium to the cave sediments. Comparisons of 87Sr/86Sr with regional surficial deposits show a significant correlation between the cave sediments (avg: 0.7228; n = 27), the fine silt lunettes of the Bool Lagoon area (avg: 0.7224; n = 4), the sandy A horizons of the Coonawarra Red Brown Earths (RBEs; avg: 0.726; n = 5), and Holocene age podsolic sand deposits (0.723). These data suggest that there has been substantial flux from this group of deposits to the caves, as would be expected considering prevailing winds. This relationship is further supported by a strong correlation between many trace elements, including Ti, Zr, Ce, and Y; however, variations in clay mineralogy suggest that the fine silt-dominated lunettes and Padthaway RBEs were not significant contributors to the cave deposits. Hence, the detritus entering the caves was more than likely from areas proximal to the cave entrance and was dominated by medium grain-sized materials. Major regional deposits, including the coarser-grained, calcite-rich Bridgewater Formation sands, basalts from the lower SE, Padthaway Horst granites, Gambier limestone, and metamorphics from the Adelaide geosyncline show minimal correlation in 87Sr/86Sr ratios, elemental geochemistry, and mineralogy with the cave sediments, and are discounted as significant sources. In comparison, 87Sr/86Sr ratios for the Coorong silty sands (0.717-0.724), Lower Murray sands (0.727-0.730), and the medium size silt component of the Murray-Darling River system (0.71-0.72), compare favourably with the cave sediments. This relationship is further supported by similarities in elemental chemistry and mineralogy. Thus, much of the strontium-rich silt that is now located in the Naracoorte Cave sediments likely originated from the Murray-Darling basin. Over time, this material has been transported to the SE of South Australia, where it mixed with the medium sand component of the regressive dune ridge sequence, locally derived organic matter, limestone fragments, and fossil material to produce the unique deposits that we see evident in many of the chambers of the Naracoorte Cave system today

The `human revolution' in lowland tropical Southeast Asia: the antiquity and behavior of anatomically modern humans at Niah Cave (Sarawak, Borneo), ,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Barker G, Barton H, Bird M, Daly P, Datan I, Dykes A, Farr L, Gilbertson D, Harrisson B, Hunt C,
Recent research in Europe, Africa, and Southeast Asia suggests that we can no longer assume a direct and exclusive link between anatomically modern humans and behavioral modernity (the `human revolution'), and assume that the presence of either one implies the presence of the other: discussions of the emergence of cultural complexity have to proceed with greater scrutiny of the evidence on a site-by-site basis to establish secure associations between the archaeology present there and the hominins who created it. This paper presents one such case study: Niah Cave in Sarawak on the island of Borneo, famous for the discovery in 1958 in the West Mouth of the Great Cave of a modern human skull, the `Deep Skull,' controversially associated with radiocarbon dates of ca. 40,000 years before the present. A new chronostratigraphy has been developed through a re-investigation of the lithostratigraphy left by the earlier excavations, AMS-dating using three different comparative pre-treatments including ABOX of charcoal, and U-series using the Diffusion-Absorption model applied to fragments of bones from the Deep Skull itself. Stratigraphic reasons for earlier uncertainties about the antiquity of the skull are examined, and it is shown not to be an `intrusive' artifact. It was probably excavated from fluvial-pond-desiccation deposits that accumulated episodically in a shallow basin immediately behind the cave entrance lip, in a climate that ranged from times of comparative aridity with complete desiccation, to episodes of greater surface wetness, changes attributed to regional climatic fluctuations. Vegetation outside the cave varied significantly over time, including wet lowland forest, montane forest, savannah, and grassland. The new dates and the lithostratigraphy relate the Deep Skull to evidence of episodes of human activity that range in date from ca. 46,000 to ca. 34,000 years ago. Initial investigations of sediment scorching, pollen, palynomorphs, phytoliths, plant macrofossils, and starch grains recovered from existing exposures, and of vertebrates from the current and the earlier excavations, suggest that human foraging during these times was marked by habitat-tailored hunting technologies, the collection and processing of toxic plants for consumption, and, perhaps, the use of fire at some forest-edges. The Niah evidence demonstrates the sophisticated nature of the subsistence behavior developed by modern humans to exploit the tropical environments that they encountered in Southeast Asia, including rainforest

Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, ,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Bontognali Tomaso R. R. , D’angeli Ilenia M. , Tisato Nicola, Vasconcelos Crisogono, Bernasconi Stefano M. , Gonzales Esteban R. G. , De Waele Jo

Unusual speleothems resembling giant mushrooms occur in Cueva Grande de Santa
Catalina, Cuba. Although these mineral buildups are considered a natural heritage, their
composition and formation mechanism remain poorly understood. Here we characterize
their morphology and mineralogy and present a model for their genesis. We propose that
the mushrooms, which are mainly comprised of calcite and aragonite, formed during four
different phases within an evolving cave environment. The stipe of the mushroom is an
assemblage of three well-known speleothems: a stalagmite surrounded by calcite rafts
that were subsequently encrusted by cave clouds (mammillaries). More peculiar is the
cap of the mushroom, which is morphologically similar to cerebroid stromatolites and
thrombolites of microbial origin occurring in marine environments. Scanning electron
microscopy (SEM) investigations of this last unit revealed the presence of fossilized
extracellular polymeric substances (EPS)—the constituents of biofilms and microbial
mats. These organic microstructures are mineralized with Ca-carbonate, suggesting that
the mushroom cap formed through a microbially-influenced mineralization process. The
existence of cerebroid Ca-carbonate buildups forming in dark caves (i.e., in the absence
of phototrophs) has interesting implications for the study of fossil microbialites preserved
in ancient rocks, which are today considered as one of the earliest evidence for life on

Fossil Deposits under the Entrance of Carlsbad Caverns, 1953,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Black Dm,

The Study of the Fossil Fauna at the Entrance to the Grotte de l'Ossuaire, Belgium, 1957,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Marsden B.

Die Entdeckung von fossilen Sugetierresten im Gebiet von Petralona (Chalkidike)., 1961,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Petrochilos, J.

Fossiler und rezenter Karst in den Holy-Cross-Bergen (Polen)., 1961,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Wojcik, Z.

Fossiler und rezenter Karst in den Holy-Cross-Bergen (Polen), 1961,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Wojcik, Z.

Die Entdeckung von fossilen Sugetierresten im Gebiet von Petralona (Chalkidike), 1961,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Petrochilos, J.

Fossilization of Bat Skeletons in the Carlsbad Caverns, 1963,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Baker, James K.

The Discovery, Exploration and Scientific Investigation of the Wellington Caves, New South Wales, 1963,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Lane Edward A. , Richards Aola M.

Although research has been unable to establish a definite date of discovery for the limestone caves at Wellington, New South Wales, documentary evidence has placed it as 1828. The actual discovery could have been made earlier by soldiers or convicts from the Wellington Settlement, which dated from 1823. Whether the aborigines knew of the cave's existence before 1828 is uncertain, but likely, as in 1830 they referred to them as "Mulwang". A number of very small limestone caves were also discovered about the same time in the nearby Molong area. The Bungonia Caves, in the Marulan district near Goulburn, were first written about a short time later. On all the evidence available at present, the Wellington Caves can be considered to be the first of any size discovered on the mainland of Australia. The Wellington Caves are situated in a low, limestone outcrop about six miles south by road from the present town of Wellington, and approximately 190 miles west-north-west of Sydney. They are at an altitude of 1000 feet, about half a mile from the present bed of the Bell River, a tributary of the Macquarie River. One large cave and several small caves exist in the outcrop, and range in size from simple shafts to passages 200 to 300 feet long. Mining for phosphate has been carried out, resulting in extensive galleries, often unstable, at several levels. Two caves have been lit by electricity for the tourist trades; the Cathedral Cave, 400 feet long, maximum width 100 feet, and up to 50 feet high; and the smaller Gaden Cave. The Cathedral Cave contains what is believed to be the largest stalagmite in the world, "The Altar", which stands on a flat floor, is 100 feet round the base and almost touches the roof about 40 feet above. It appears that the name Cathedral was not applied to the cave until this century. The original names were "The Great Cave", "The Large Cave" or "The Main Cave". The Altar was named by Thomas Mitchell in 1830. See map of cave and Plate. Extensive Pleistocene bone deposits - a veritable mine of bone fragments - were found in 1830, and have been studied by palaeontologists almost continually ever since. These bone deposits introduced to the world the extinct marsupials of Australia, and have a special importance in view of the peculiar features of the living fauna of the continent. The names of many famous explorers and scientists are associated with this history, among the most prominent being Sir Thomas Mitchell and Sir Richard Owen. Anderson (1933) gives a brief outline of why the Wellington Caves fossil bone beds so rapidly attracted world-wide interest. During the 18th and early 19th Century, the great palaeontologist, Baron Georges Cuvier, and others, supposed that the earth had suffered a series of catastrophic changes in prehistoric times. As a result of each of these, the animals living in a certain area were destroyed, the area being repopulated from isolated portions of the earth that had escaped the catastrophe. The Bilical Deluge was believed to have been the most recent. Darwin, during the voyage of the Beagle around the world (1832-37), was struck by the abundance of Pleistocene mammalian fossils in South America, and also by the fact that, while these differed from living forms, and were in part of gigantic dimensions, they were closely related to present-day forms in that continent. Darwin's theory of descent with modification did not reconcile with the ideas of Cuvier and others. As the living mammalian fauna of Australia was even more distinctive than that of South America, it was a matter of importance and excitement to discover the nature of the mammals which had lived in Australia in the late Tertiary and Pleistocene.

Fossil Karst in Derbyshire, 1964,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Ford T. D.

Observations on the evolution of caves., 1964,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Cavaille Albert
In this note, which results from a paper published in France, the author defines the "karst system" formed by several successive levels, at the heart of a limestone mass: joints of surface feeding, vertical chimneys, galleries which are alternatively dry and full of water according to the season, a network of continually drowned clefts. He then studies modifications in this system resulting from internal causes, corrosion, filling and sedimentation, concretion. Then he shows how this evolution of the karst system may be modified by general conditions: geology, tectonics, geography with the losses, resurgences and the role of surface formations. The deepening of the river level may create a structure of differing levels in the various karst system, but their positioning is always slower than the streams erosion and it comes about later. In any case, the caves in a dried karst system undergo an evolution on their own. Finally, the author gives the definition of the terms used to explain the evolution in the karst system: "embryonic galleries" in the network of clefts, "young galleries" in the zone which is alternately wet and dry, "mature galleries" where the concretion and the erosion are balanced, "old galleries" where the concretion is becoming more and more important, "dead galleries" where the cave is completely filled by the deposits and concretions. This classification will easily replace the inexact terms of "active galleries" and "fossilized galleries" which are too vague and lead to confusion.

The meaning of Pleistocene birdfauna of Hungarian Middle Mountain caves., 1964,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Farkas Tibor
In the present study, the fossil bird fauna of the caves of the Hungarian Middle Mountains is examined for evidence in support of the hypothesis that the Carpathian Basin may have served as a faunal refugee during the last Quaternary glacial period. As an introduction, the reasons for the refugee hypothesis, including paleobotanical and glacial theoretical aspects, are discussed. Since the first bird fossils of the cave fauna considered in this paper belong to the Wrm I-II, the faunistic conditions of the Riss glacial period are not discussed in detail, The known faunas up to the Wrm II are interstadial, which seems to serve only as indirect support for the refugee hypothesis. Paleobotanical evidence, both for and against the hypothesis, is also considered. In conclusion, the abundant cave faunas of all phases of the Wrm III are cited as being; at least at the present time; the most convincing argument for the refugee hypothesis. The heterogeneous composition of these faunas permits certain tentative conclusions regarding the faunas of Wurm I and II.

Short-Faced Bear (Arctodus) Fossils from Ozark Caves, 1965,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Hawksley, Oscar

Results 1 to 15 of 243
You probably didn't submit anything to search for