The origin of the sediments located in the Naracoorte Caves (South Australia) was investigated via the analysis of strontium isotope ratios (87Sr/86Sr), elemental geochemistry, and mineralogy. Sedimentary deposits located in Robertson, Wet, Blanche and several other chambers in Victoria Cave are all variable mixes of fine sand and coarse silts, which display similar and consistent strontium isotope ratios (0.717-0.725). This suggests that over the 400[no-break space]ka time frame that these deposits span there has been minimal variation in the source of the clastic sediments. Increased strontium concentrations for these cave sediments correspond with increasing silt content, yet there is no correlation between 87Sr/86Sr ratios and silt content. This implies that the silt-sized component of the sediments is the main contributor of strontium to the cave sediments. Comparisons of 87Sr/86Sr with regional surficial deposits show a significant correlation between the cave sediments (avg: 0.7228; n = 27), the fine silt lunettes of the Bool Lagoon area (avg: 0.7224; n = 4), the sandy A horizons of the Coonawarra Red Brown Earths (RBEs; avg: 0.726; n = 5), and Holocene age podsolic sand deposits (0.723). These data suggest that there has been substantial flux from this group of deposits to the caves, as would be expected considering prevailing winds. This relationship is further supported by a strong correlation between many trace elements, including Ti, Zr, Ce, and Y; however, variations in clay mineralogy suggest that the fine silt-dominated lunettes and Padthaway RBEs were not significant contributors to the cave deposits. Hence, the detritus entering the caves was more than likely from areas proximal to the cave entrance and was dominated by medium grain-sized materials. Major regional deposits, including the coarser-grained, calcite-rich Bridgewater Formation sands, basalts from the lower SE, Padthaway Horst granites, Gambier limestone, and metamorphics from the Adelaide geosyncline show minimal correlation in 87Sr/86Sr ratios, elemental geochemistry, and mineralogy with the cave sediments, and are discounted as significant sources. In comparison, 87Sr/86Sr ratios for the Coorong silty sands (0.717-0.724), Lower Murray sands (0.727-0.730), and the medium size silt component of the Murray-Darling River system (0.71-0.72), compare favourably with the cave sediments. This relationship is further supported by similarities in elemental chemistry and mineralogy. Thus, much of the strontium-rich silt that is now located in the Naracoorte Cave sediments likely originated from the Murray-Darling basin. Over time, this material has been transported to the SE of South Australia, where it mixed with the medium sand component of the regressive dune ridge sequence, locally derived organic matter, limestone fragments, and fossil material to produce the unique deposits that we see evident in many of the chambers of the Naracoorte Cave system today
Distinction is made between the experiment which "demonstrates" having an argumentative value; and the experiment which "questions" nature by isolating one factor and by determining the mode of its action. The concept of experiment in geology and in geodynamics and the distinctions between geodynamics and geophysics are discussed. Karstic geodynamics considers the action of fluids; mainly liquids; on a soluble rock. It is a science bordering the different branches of geochemistry, hydrology, the mechanics of rocks, and geophysics. Researches in karstic geodynamics are based upon measurements obtained through field surveys, or upon the utilization of a subterranean laboratory. However, in the laboratory this hardly surpasses the stage of experimental demonstration. A series of simple experiments are enumerated to exemplify the above statement, like the one where the attack of a diluted acid on a soluble rock is utilized, in order to enable us to classify the major problems encountered in karstic corrosion. The last chapter discusses the bicarbonate equilibriums of Ca-CO2. Experiment furnishes the empiric criterion on which scientific theory is founded. Each discipline has its own methodology dependent on the object under study having experimental criteria of different nature. This is particularly true in case of such distant phenomena which no longer have a common ground with human dimensions like space for astronomy or time for geology. In such cases the possibilities of "instrumental" experimentations are very limited. After a brief recollection of the principles of experimental procedure and the history of the experiments attempted by geodynamicians (tectonics, geomorphology, etc.) we will analyze several methods of investigation and by relying exactly on the example of karstic corrosion we shall determine those which have a value for the science of karstology.
Because of the ease of its exploration, the Punchbowl-Signature system (Map reference 677587, Army 1/50,000 Sheet 8627-IV, Goodradigbee) is the most frequently visited of the Wee Jasper caves though it contains even less calcite decoration than does Dip Cave. On the other hand, the system is of considerable scientific interest, both biological and geomorphological. Biologically the interest centres on the long-term investigations of the colony of Bentwing Bats (Miniopterus schreibersii blepotis), initiated by G. Dunnet, sustained and enlarged by D. Purchase. On the geomorphological side, though it is now a dry inactive system like Dip Cave, it possesses a morphology which reveals much of the history of its excavation by a former underground river and so contrasts with its neighbour in the same geological formation only a mile away where there are many difficulties in the way of interpretation of its evolution (Jennings, 1963a).
Barber Cave is one of the Cooleman Plain caves known for a long time. Inscriptions on the cave walls take white man's knowledge of it at least back to 1875 when it was visited by a party led by John Gale of Queanbeyan. However, the actual date of discovery remains obscure and may belong to the period of the late 1830s to the early 'fifties when there were convict and ex-convict stockmen looking after T.A. Murray's (later Sir Terence Murray) stock on the plain. It is of modest dimensions with about 335m (1,100 ft) of passage, some 25m (80 ft) of overall height, and no spaces worthy of the name chamber. Within this small compass, nevertheless, it possesses such a good range of cave forms that it was selected o represent "karst cave" in the series of landform prototypes being described and illustrated briefly for teaching purposes in the Australian Geographer (Jennings, 1967b). Here a fuller account of its morphology is presented for speleologists.